排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
患者女,68岁,主因双下肢疼痛、无力22 h入院.入院前22 h患者小便后无明显诱因突发双下肢剧烈疼痛,刀割样,20 min后出现双下肢麻木无力,活动不能,伴腹部柬带感人我科治疗.病前无感冒发热史.既往史:高血压史,脑栓塞史(无后遗症),二尖瓣关闭不全,房颤史. 相似文献
12.
Objective To observe the toxic effects of rotenone on the proliferation, γ-glutamylcysteinylglycine (GSH) content and the expression level of glial cell line-derived neurotrophic factor (GDNF) of rat rnidbrain astrocytes in vitro and the interventional effect of arabinoeytidine (ara-c). Methods In vitro cultured rat midbrain astrocytes were assigned randomly into 9 groups, including a normal control group, 4 short-term rotenone treatment groups exposed for 24 h to 10, 20, 40 or 60 nmol/L rotenone, 2 long-term rotenone treatment groups exposed for 30 days to 10 or 20 nmol/L rotenone, and 2 ara-c groups with 500 nmol/L ara-c treatment following exposure to 10 or 20 nmol/L rotenone for 6 days. The cell proliferation was assessed by immunocytochemical detection of the expression of proliferating cell nuclear antigen (PCNA). GSH content in the treated cells was measured by GSH detection kit, and the expression of GDNF was detected with immunocytochemistry and Western blot. Results The 24-h exposure to low-level rotenone (10 and 20 nmol/L) did not cause any changes in GSH content or GDNF expression in the cells. But at 40 and 60 nmol/L, rotenone treatment for 24 h significantly decreased the GSH content and GDNF expression. Rotenone exposure for 30 days increased the ratio of proliferating astrocytes and decreased GDNF expression level, but the GSH content remained stable. The application of 500 nmol/L ara-c to suppress the cell proliferation restored the expression level of GDNF to almost the control level and markedly increased GSH content. Conclusion Rotenone affects the proliferation and activity of rat midbrain astrocytes in vitro and deteriorates the microenvironment of dopaminergic neurons. Low-level ara-c can increase the GSH content and GDNF expression levels by suppressing the proliferation of rotenone-exposed astrocytes, suggesting its potential value in the treatment of Parkinson's disease. 相似文献
13.
Objective To observe the toxic effects of rotenone on the proliferation, γ-glutamylcysteinylglycine (GSH) content and the expression level of glial cell line-derived neurotrophic factor (GDNF) of rat rnidbrain astrocytes in vitro and the interventional effect of arabinoeytidine (ara-c). Methods In vitro cultured rat midbrain astrocytes were assigned randomly into 9 groups, including a normal control group, 4 short-term rotenone treatment groups exposed for 24 h to 10, 20, 40 or 60 nmol/L rotenone, 2 long-term rotenone treatment groups exposed for 30 days to 10 or 20 nmol/L rotenone, and 2 ara-c groups with 500 nmol/L ara-c treatment following exposure to 10 or 20 nmol/L rotenone for 6 days. The cell proliferation was assessed by immunocytochemical detection of the expression of proliferating cell nuclear antigen (PCNA). GSH content in the treated cells was measured by GSH detection kit, and the expression of GDNF was detected with immunocytochemistry and Western blot. Results The 24-h exposure to low-level rotenone (10 and 20 nmol/L) did not cause any changes in GSH content or GDNF expression in the cells. But at 40 and 60 nmol/L, rotenone treatment for 24 h significantly decreased the GSH content and GDNF expression. Rotenone exposure for 30 days increased the ratio of proliferating astrocytes and decreased GDNF expression level, but the GSH content remained stable. The application of 500 nmol/L ara-c to suppress the cell proliferation restored the expression level of GDNF to almost the control level and markedly increased GSH content. Conclusion Rotenone affects the proliferation and activity of rat midbrain astrocytes in vitro and deteriorates the microenvironment of dopaminergic neurons. Low-level ara-c can increase the GSH content and GDNF expression levels by suppressing the proliferation of rotenone-exposed astrocytes, suggesting its potential value in the treatment of Parkinson's disease. 相似文献
14.
Objective To observe the toxic effects of rotenone on the proliferation, γ-glutamylcysteinylglycine (GSH) content and the expression level of glial cell line-derived neurotrophic factor (GDNF) of rat rnidbrain astrocytes in vitro and the interventional effect of arabinoeytidine (ara-c). Methods In vitro cultured rat midbrain astrocytes were assigned randomly into 9 groups, including a normal control group, 4 short-term rotenone treatment groups exposed for 24 h to 10, 20, 40 or 60 nmol/L rotenone, 2 long-term rotenone treatment groups exposed for 30 days to 10 or 20 nmol/L rotenone, and 2 ara-c groups with 500 nmol/L ara-c treatment following exposure to 10 or 20 nmol/L rotenone for 6 days. The cell proliferation was assessed by immunocytochemical detection of the expression of proliferating cell nuclear antigen (PCNA). GSH content in the treated cells was measured by GSH detection kit, and the expression of GDNF was detected with immunocytochemistry and Western blot. Results The 24-h exposure to low-level rotenone (10 and 20 nmol/L) did not cause any changes in GSH content or GDNF expression in the cells. But at 40 and 60 nmol/L, rotenone treatment for 24 h significantly decreased the GSH content and GDNF expression. Rotenone exposure for 30 days increased the ratio of proliferating astrocytes and decreased GDNF expression level, but the GSH content remained stable. The application of 500 nmol/L ara-c to suppress the cell proliferation restored the expression level of GDNF to almost the control level and markedly increased GSH content. Conclusion Rotenone affects the proliferation and activity of rat midbrain astrocytes in vitro and deteriorates the microenvironment of dopaminergic neurons. Low-level ara-c can increase the GSH content and GDNF expression levels by suppressing the proliferation of rotenone-exposed astrocytes, suggesting its potential value in the treatment of Parkinson's disease. 相似文献
15.
Objective To observe the toxic effects of rotenone on the proliferation, γ-glutamylcysteinylglycine (GSH) content and the expression level of glial cell line-derived neurotrophic factor (GDNF) of rat rnidbrain astrocytes in vitro and the interventional effect of arabinoeytidine (ara-c). Methods In vitro cultured rat midbrain astrocytes were assigned randomly into 9 groups, including a normal control group, 4 short-term rotenone treatment groups exposed for 24 h to 10, 20, 40 or 60 nmol/L rotenone, 2 long-term rotenone treatment groups exposed for 30 days to 10 or 20 nmol/L rotenone, and 2 ara-c groups with 500 nmol/L ara-c treatment following exposure to 10 or 20 nmol/L rotenone for 6 days. The cell proliferation was assessed by immunocytochemical detection of the expression of proliferating cell nuclear antigen (PCNA). GSH content in the treated cells was measured by GSH detection kit, and the expression of GDNF was detected with immunocytochemistry and Western blot. Results The 24-h exposure to low-level rotenone (10 and 20 nmol/L) did not cause any changes in GSH content or GDNF expression in the cells. But at 40 and 60 nmol/L, rotenone treatment for 24 h significantly decreased the GSH content and GDNF expression. Rotenone exposure for 30 days increased the ratio of proliferating astrocytes and decreased GDNF expression level, but the GSH content remained stable. The application of 500 nmol/L ara-c to suppress the cell proliferation restored the expression level of GDNF to almost the control level and markedly increased GSH content. Conclusion Rotenone affects the proliferation and activity of rat midbrain astrocytes in vitro and deteriorates the microenvironment of dopaminergic neurons. Low-level ara-c can increase the GSH content and GDNF expression levels by suppressing the proliferation of rotenone-exposed astrocytes, suggesting its potential value in the treatment of Parkinson's disease. 相似文献
16.
目的 观察鱼藤酮毒性作用及阿糖胞苷(ara-c)干预对体外培养中脑腹侧星形胶质细胞增殖、还原型谷胱甘肽(GSH)含量及胶质细胞源性神经营养因子(GDNF)表达的影响. 方法 体外培养大鼠中脑腹侧星形胶质细胞随机分成9组,分别为对照组,10、20、40及60nmol/L鱼藤酮短时程损伤组(用相应浓度鱼藤酮处理24 h),10及20 nmol/L鱼藤酮长时程损伤组(相应浓度鱼藤酮处理30 d),10及20 nmol/L鱼藤酮长时程损伤+ara-c处理组(相应浓度鱼藤酮处理30 d,500nmol/L ara-c处理6 d).增殖细胞核抗原(PCNA)免疫细胞化学染色观察细胞增殖情况,GSH检测试剂盒检测细胞GSH含量.免疫细胞化学方法 和Western blot检测GDNF的表达情况. 结果短时程损伤各组10和20 nmol/L鱼藤酮作用 24 h未能使细胞GSH含量及GDNF表达最降低,但40和60 nmol/L鱼藤酮作用24 h可使细胞GSH含量降低、GDNF表达减少.长时程损伤组10和20nmol/L鱼藤酮作用30 d后处于增殖状态的星形胶质细胞比例增高,GSH含量未见降低.但GDNF表达量减少:500nmol/L ara-c抑制细胞增殖后,可使GDNF的表达回升至接近对照组水平且GSH含量明显提高. 结论 鱼藤酮可影响中腩腹侧旱形胶质细胞的增殖和功能,恶化多巴胺能神经元的生存微环境;低浓度ara-c可通过抑制旱形胶质细胞的过度增殖,恢复GDNF表达量并明显提高GSH含量,提示ara-c对帕金森病具有潜在的治疗价值. 相似文献
17.
糖肾康饮治疗糖尿病肾病60例临床观察 总被引:1,自引:0,他引:1
目的:探讨糖肾康饮治疗气阴两虚夹瘀型2型糖尿病早期肾病的临床疗效。方法:将60例早期2型糖尿病肾病气阴两虚夹瘀证患者,随机分为两组,即治疗组、对照组,在予以糖适平或胰岛素为基本降糖治疗基础上.治疗组给予糖肾康饮配合福辛普利治疗,对照组只予福辛普利治疗,疗程2个月,比较治疗前后两组中医证候及24h尿白蛋白排泄率等情况。结果:治疗组中医症状改善总有效率及降低尿微量白蛋白有效率均优于对照组,两组比较差异显著(P〈0.05)。结论:糖肾康饮联合福辛普利疗法降低早期DN患者UAER的疗效优于单独应用福辛普利疗法。 相似文献
18.
Objective To observe the toxic effects of rotenone on the proliferation, γ-glutamylcysteinylglycine (GSH) content and the expression level of glial cell line-derived neurotrophic factor (GDNF) of rat rnidbrain astrocytes in vitro and the interventional effect of arabinoeytidine (ara-c). Methods In vitro cultured rat midbrain astrocytes were assigned randomly into 9 groups, including a normal control group, 4 short-term rotenone treatment groups exposed for 24 h to 10, 20, 40 or 60 nmol/L rotenone, 2 long-term rotenone treatment groups exposed for 30 days to 10 or 20 nmol/L rotenone, and 2 ara-c groups with 500 nmol/L ara-c treatment following exposure to 10 or 20 nmol/L rotenone for 6 days. The cell proliferation was assessed by immunocytochemical detection of the expression of proliferating cell nuclear antigen (PCNA). GSH content in the treated cells was measured by GSH detection kit, and the expression of GDNF was detected with immunocytochemistry and Western blot. Results The 24-h exposure to low-level rotenone (10 and 20 nmol/L) did not cause any changes in GSH content or GDNF expression in the cells. But at 40 and 60 nmol/L, rotenone treatment for 24 h significantly decreased the GSH content and GDNF expression. Rotenone exposure for 30 days increased the ratio of proliferating astrocytes and decreased GDNF expression level, but the GSH content remained stable. The application of 500 nmol/L ara-c to suppress the cell proliferation restored the expression level of GDNF to almost the control level and markedly increased GSH content. Conclusion Rotenone affects the proliferation and activity of rat midbrain astrocytes in vitro and deteriorates the microenvironment of dopaminergic neurons. Low-level ara-c can increase the GSH content and GDNF expression levels by suppressing the proliferation of rotenone-exposed astrocytes, suggesting its potential value in the treatment of Parkinson's disease. 相似文献
19.
20.
脑源性神经营养因子 (BDNF)是神经生长因子家族的成员之一 ,可预防脑缺血时的神经元死亡 ,从而改善预后。文章阐述了BDNF的结构、功能、分布和对脑缺血的保护作用。其保护机制可能包括抑制兴奋性毒性、调节神经元内Ca2 + 平衡和Bax、Bcl 2的表达等。 相似文献