首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   26篇
耳鼻咽喉   1篇
儿科学   4篇
妇产科学   3篇
基础医学   50篇
临床医学   7篇
内科学   22篇
神经病学   131篇
特种医学   3篇
外科学   8篇
综合类   1篇
预防医学   7篇
眼科学   24篇
药学   3篇
肿瘤学   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   5篇
  2013年   17篇
  2012年   28篇
  2011年   13篇
  2010年   11篇
  2009年   5篇
  2008年   20篇
  2007年   14篇
  2006年   17篇
  2005年   20篇
  2004年   17篇
  2003年   12篇
  2002年   11篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
排序方式: 共有265条查询结果,搜索用时 0 毫秒
71.
Nonrandom tissue distribution of mutant mtDNA.   总被引:7,自引:0,他引:7  
Heteroplasmic mitochondrial DNA (mtDNA) defects are an important cause of inherited human disease. On a cellular level, the percentage of mutant mtDNA is the principal factor behind the expression of the genetic defect. Marked variation in the level of mutant mtDNA among tissues is thought to be responsible for the diverse clinical phenotypes associated with the same pathogenic mtDNA mutation. This study was designed to determine whether the percentage level of a pathogenic mtDNA molecule is determined by a purely random process. The tissue distribution of the A3243G MELAS point mutation was analyzed in five individuals who were members of a family with maternally inherited diabetes and deafness. The level of mutant mtDNA was measured in four tissues in three individuals and three tissues in two individuals. The highest level of mutant mtDNA occurred in skeletal muscle, followed by hair follicles, and then buccal mucosa, with the lowest levels in blood (leucocyte/platelet fraction). The probability of observing any strict hierarchy in family is 4.82 x 10(-5). These results indicate that the distribution of the A3243G mutation is not solely determined by random processes.  相似文献   
72.
73.
The identification of cytochrome c oxidase (COX)-deficient/succinate dehydrogenase (SDH)- positive cells using sequential histochemistry has proved important in the identification of cells with high mitochondrial DNA (mtDNA) mutant load. We demonstrate large numbers of COX-deficient/SDH-positive neurons in a mosaic pattern throughout the CNS of a patient with a multiple mtDNA deletion disorder. This patient had prominent central and peripheral nervous system involvement with marked cerebellar ataxia, a parkinsonian extra-pyramidal movement disorder, external ophthalmoplegia, dysphagia, and a severe peripheral neuropathy. There was degeneration of myelin tracts in the cerebellum and dorsal spinal columns, diffuse astrocytosis, and selective neuronal degeneration particularly in the midbrain and cerebral microvacuolation. The proportional distribution of the COX-deficient neurons did not always correlate directly with the degree of neuropathological damage with regions of high neuronal loss having relatively low proportions of these cells. Other clinically affected CNS regions have high levels of COX-deficient neurons without significant cell loss. The role of these COX-deficient neurons in causing neuronal degeneration and clinical symptoms is discussed.  相似文献   
74.
75.
76.
PurposeThe purpose of this study was to assess the morphological and phenotypic responses of corneal epithelial dendritic cells (DCs) to acute topical hyperosmolar stress, given a pathogenic role for tear hyperosmolarity in dry eye disease (DED).MethodsC57BL/6J mice were anesthetized and received 350 mOsm/L (physiological; n = 5 mice), 450 mOsm/L (n = 6), or 600 mOsm/L (n = 6) saline on a randomly assigned eye. Corneas were harvested 2 hours later. Immunofluorescent staining was performed using CD45, CD86, and CD68 antibodies to investigate DC morphology (density, viability, field area, circularity, and dendritic complexity) and immunological phenotype. Flow cytometry was used to confirm CD86 and CD68 expression in CD11c+ DCs, using C57BL/6J mice that received topical applications of 350 mOsm/L, 450 mOsm/L, or 600 mOsm/L (n = 5 per group) bilaterally for 2 hours.ResultsFollowing exposure to 450 mOsm/L topical saline for 2 hours, DCs in the central and peripheral cornea were larger (field area: Pcentral = 0.005, Pperipheral = 0.037; circularity: Pcentral = 0.026, and Pperipheral = 0.013) and had higher expression of CD86 compared with 350 mOsm/L controls (immunofluorescence: P < 0.0001; flow cytometry: P = 0.0058). After application of 600 mOsm/L saline, DC morphology was unchanged, although the percentage of fragmented DCs, and phenotypic expression of CD86 (immunofluorescence: P < 0.0001; and flow cytometry: P = 0.003) and CD68 (immunofluorescence: P = 0.024) were higher compared to 350 mOsm/L controls.ConclusionsShort-term exposure to mild hyperosmolar saline (450 mOsm/L) induced morphological and phenotypic maturation in corneal epithelial DCs. More severe hyperosmolar insult (600 mOsm/L) for 2 hours appeared toxic to these cells. These data suggest that hyperosmolar conditions activate corneal DCs, which may have implications for understanding DC activation in DED.  相似文献   
77.
SUMMARY: Neuroferritinopathy is an autosomal dominant extrapyramidal movement disorder, caused by FTL gene mutations. Iron decreases the MR T2* decay time, therefore increasing the R2* (R2* = 1 /T2*), which correlates with brain tissue iron content. 3T structural and quantitative MR imaging assessment of R2* in 10 patients with neuroferritinopathy demonstrated a unique pattern of basal ganglia cavitation involving the substantia nigra in older patients and increasing thalamic R2* signal intensity detectable during 6 months. Increasing R2* signal intensity in the thalamus correlated with progression on a clinical rating scale measuring dystonia severity. Thalamic R2* signal intensity is a clinically useful method of objectively tracking disease progression in this form of neurodegeneration with brain iron accumulation.  相似文献   
78.

Purpose  

Loss of mitochondrial DNA (mtDNA) has been described in whole blood samples from a small number of patients with sepsis, but the underlying mechanism and clinical implications of this observation are not clear. We have investigated the cellular basis of the mtDNA depletion in sepsis, and determined clinical correlates with mtDNA depletion.  相似文献   
79.
Sodium valproate (VPA) is widely used throughout the world to treat epilepsy, migraine, chronic headache, bipolar disorder, and as adjuvant chemotherapy. VPA toxicity is an uncommon but potentially fatal cause of idiosyncratic liver injury. Rare mutations in POLG, which codes for the mitochondrial DNA polymerase γ (polγ), cause Alpers-Huttenlocher syndrome (AHS). AHS is a neurometabolic disorder associated with an increased risk of developing fatal VPA hepatotoxicity. We therefore set out to determine whether common genetic variants in POLG explain why some otherwise healthy individuals develop VPA hepatotoxicity. We carried out a prospective study of subjects enrolled in the Drug Induced Liver Injury Network (DILIN) from 2004 to 2008 through five US centers. POLG was sequenced and the functional consequences of VPA and novel POLG variants were evaluated in primary human cell lines and the yeast model system Saccharomyces cerevisiae. Heterozygous genetic variation in POLG was strongly associated with VPA-induced liver toxicity (odds ratio = 23.6, 95% confidence interval [CI] = 8.4-65.8, P = 5.1 × 10??). This was principally due to the p.Q1236H substitution which compromised polγ function in yeast. Therapeutic doses of VPA inhibited human cellular proliferation and high doses caused nonapoptotic cell death, which was not mediated through mitochondrial DNA depletion, mutation, or a defect of fatty acid metabolism. CONCLUSION: These findings implicate impaired liver regeneration in VPA toxicity and show that prospective genetic testing of POLG will identify individuals at high risk of this potentially fatal consequence of treatment.  相似文献   
80.
Disproportionate exercise limitation in patients with cardiovascular disease is a common problem faced by clinical cardiologists and other physicians. Symptoms may be attributed to psychological factors or hypothetical pathophysiological mechanisms that are difficult to confirm clinically. This case report describes how the use of metabolic exercise testing in a 28 year old woman with morphologically and haemodynamically mild hypertrophic cardiomyopathy and severe exercise limitation led to the diagnosis of an alternative cause for the patient's symptoms, namely a primary disturbance of the mitochondrial respiratory chain probably caused by a nuclear encoded gene defect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号