首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18865篇
  免费   1574篇
  国内免费   45篇
耳鼻咽喉   172篇
儿科学   615篇
妇产科学   487篇
基础医学   2596篇
口腔科学   213篇
临床医学   2165篇
内科学   3749篇
皮肤病学   275篇
神经病学   2249篇
特种医学   350篇
外科学   1976篇
综合类   136篇
一般理论   20篇
预防医学   2698篇
眼科学   263篇
药学   1142篇
中国医学   9篇
肿瘤学   1369篇
  2024年   40篇
  2023年   345篇
  2022年   574篇
  2021年   1193篇
  2020年   711篇
  2019年   994篇
  2018年   1053篇
  2017年   707篇
  2016年   723篇
  2015年   782篇
  2014年   999篇
  2013年   1251篇
  2012年   1814篇
  2011年   1786篇
  2010年   836篇
  2009年   690篇
  2008年   1118篇
  2007年   963篇
  2006年   842篇
  2005年   680篇
  2004年   546篇
  2003年   486篇
  2002年   384篇
  2001年   101篇
  2000年   89篇
  1999年   80篇
  1998年   69篇
  1997年   46篇
  1996年   25篇
  1995年   35篇
  1994年   25篇
  1993年   27篇
  1992年   44篇
  1991年   44篇
  1990年   19篇
  1989年   42篇
  1988年   29篇
  1987年   20篇
  1986年   22篇
  1985年   25篇
  1984年   34篇
  1983年   20篇
  1982年   17篇
  1981年   7篇
  1980年   20篇
  1979年   20篇
  1978年   14篇
  1977年   9篇
  1974年   7篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Adult hippocampal neurogenesis has been demonstrated in several species and is regulated by both environmental and pharmacological stimuli. The present study seeks to determine whether hippocampal proliferation and neurogenesis are altered in adult animals exposed to inescapable shock (IS) in the learned helplessness model of depression. We report that exposure to avoidance testing, regardless of pre-exposure to IS, decreases cell proliferation in the hippocampus, extending previous studies demonstrating downregulation of neurogenesis by exposure to acute stressors. In addition, when the analysis was conducted 9 days after exposure to IS we observed a significant decrease in cell proliferation compared to nonshocked animals. Administration of fluoxetine, a serotonin selective reuptake inhibitor, from days 2-8 blocked the downregulation of cell proliferation resulting from IS. Fluoxetine treatment also reversed the deficit in escape latency observed in animals exposed to IS. Finally, at the 9 day time point, there was no significant difference in blood levels of corticosterone between nonshocked and IS exposed animals, indicating that the decreased cell proliferation that is observed is not due to increased levels of this adrenal steroid. These findings demonstrate that exposure to IS, which results in a state of behavioral despair, decreases hippocampal cell proliferation and that this effect can be reversed by fluoxetine treatment.  相似文献   
52.
Older age, prior transplantation, pulmonary hypertension, and mechanical support are commonly seen in current potential cardiac transplant recipients. Transplants in 436 consecutive adult patients from 1994 to 1999 were reviewed. There were 251 using standard donors in 243 patients (age range 18-69 years). To emphasize recipient risk, 185 patients who received a nonstandard donor were excluded from analysis. The indications for transplant were ischemic heart disease (n = 123, 47%), dilated cardiomyopathy (n = 82, 32%), and others (n=56, 21%). One hundred and forty-nine (57%) recipients were listed as status I; 5 and 6% were supported with an intra-aortic balloon and an assist device, respectively. The 30-d survival and survival to discharge were 94.7 and 92.7%, respectively; 1-year survival was 89.1%. Causes of early death were graft failure (n = 6), infection (n = 4), stroke (n = 4), multiorgan failure (n = 3) and rejection (n = 2). Predictors were balloon pump use alone (OR= 11.4, p =0.002), pulmonary vascular resistance > 4 Wood units (OR = 5.7, p = 0.007), pretransplant creatinine > 2.0 mg/dL (OR = 6.9, p = 0.004) and female donor (OR = 8.3, p = 0.002). Recipient age and previous surgery did not affect short-term survival. Heart transplantation in the current era consistently offers excellent early and 1-year survival for well-selected recipients receiving standard donors. Early mortality tends to reflect graft failure while hospital mortality may be more indicative of recipient selection.  相似文献   
53.
Intracranial pressure was increased in cats by infusing 'mock' CSF intracranially, thus decreasing cerebral perfusion and oxygenation. The cats then randomly received either 50% O2 or 50% O2-5% CO2 by inhalation. As monitored by in vivo near-infrared spectroscopy (NIR), no improvement was noted after 50% O2 whereas 50% O2-5% CO2 resulted in increased perfusion, an oxidation of cytochrome a,a3, an increase in oxyhemoglobin, and reduced quantities of de-oxyhemoglobin (p less than 0.01) despite a further increase in intracranial pressure. The authors conclude that: NIR is a useful means of noninvasively and directly assessing brain metabolism and has advantages over simple ICP monitoring; and continued investigations of CO2 as a possible therapeutic modality after head injury appear warranted.  相似文献   
54.
Neural representations created in the absence of external sensory stimuli are referred to as imagery, and such representations may be augmented by reenactment of sensorimotor processes. We measured nasal airflow in human subjects while they imagined sights, sounds and smells, and only during olfactory imagery did subjects spontaneously enact the motor component of olfaction--that is, they sniffed. Moreover, as in perception, imagery of pleasant odors involved larger sniffs than imagery of unpleasant odors, suggesting that the act of sniffing has a functional role in creating of olfactory percepts.  相似文献   
55.
Mosaicism for an FMR1 gene deletion in a fragile X female   总被引:2,自引:0,他引:2  
Most cases of fragile X syndrome result from expansion of CGG repeats in the FMR1 gene; deletions and point mutations of FMR1 are much less common. Mosaicism for an FMR1 full mutation with a deletion or with a normal allele has been reported in fragile X males. Here we report on a fragile X female who is mosaic for an FMR1 full mutation and an intragenic deletion. The patient is a 4-year-old girl with developmental delay, autistic-like behaviors, and significant speech and language abnormalities. Southern blotting demonstrated the presence of a methylated full mutation, a normal allele in methylated and unmethylated forms, and an additional fragment smaller than the normal methylated allele. This result indicates that the patient is mosaic for a full mutation and a deletion, in the presence of a normal allele. By DNA sequence analysis, we mapped the 5' breakpoint 63/65 bp upstream from the CGG repeat region and the 3' breakpoint 86/88 bp downstream of the CGG repeats within the FMR1 gene. The deletion removed 210 bp, including the entire CGG repeat region. The full mutation was inherited from a premutation in the patient's mother. The deletion, which remained methylated at the Eag I and Nru I sites, was probably derived from the full mutation allele. Mosaicism of this type is rare in females with a fragile X mutation but should be kept in mind in the interpretation of Southern blots.  相似文献   
56.
T-cell clones are valuable tools for investigating T-cell specificity in infectious, autoimmune and malignant diseases. T cells specific for clinically-relevant autoantigens are difficult to clone using traditional methods. Here we describe an efficient method for cloning human autoantigen-specific CD4+ T cells pre-labelled with CFSE. Proliferating, antigen-responsive CD4+ cells were identified flow cytometrically by their reduction in CFSE staining and single cells were sorted into separate wells. The conditions (cytokines, mitogens and tissue culture plates) for raising T-cell clones were optimised. Media supplemented with IL-2+IL-4 supported growth of the largest number of antigen-specific clones. Three mitogens, PHA, anti-CD3 and anti-CD3+anti-CD28, each stimulated the growth of similar numbers of antigen-specific clones. Cloning efficiency was similar in flat- and round-bottom plates. Based on these findings, IL-2+IL-4, anti-CD3 and round-bottom plates were used to clone FACS-sorted autoantigen-specific CFSE-labelled CD4+ T cells. Sixty proinsulin- and 47 glutamic acid decarboxylase-specific clones were obtained from six and two donors, respectively. In conclusion, the CFSE-based method is ideal for cloning rare, autoantigen-specific, human CD4+ T cells.  相似文献   
57.
Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200–400 mosaic SNVs per cell in three human fetal brains (15–21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.

Somatic mosaicism, the presence of more than one genotype in the somatic cells of an individual, is a prominent phenomenon in the human central nervous system. Forms of mosaicism include aneuploidies and smaller copy number variants (CNVs), structural variants (SVs), mobile element insertions, indels, and single nucleotide variants (SNVs). The developing human brain exhibits high levels of aneuploidy compared to other tissues, generating genetic diversity in neurons (Pack et al. 2005; Yurov et al. 2007; Bushman and Chun 2013). Such aneuploidy was suggested to be a natural feature of neurons, rather than a distinctive feature of neurodegeneration. However, the frequency of aneuploidy in neurons has been debated, with a separate study suggesting that aneuploidies occur in only about 2.2% of mature adult neurons (Knouse et al. 2014). They hence infer that such aneuploidy could have adverse effects at the cellular and organismal levels. Additionally, analysis of single cells from normal and pathological human brains identified large, private, and likely clonal somatic CNVs in both normal and diseased brains (Gole et al. 2013; McConnell et al. 2013; Cai et al. 2014; Knouse et al. 2016; Chronister et al. 2019; Perez-Rodriguez et al. 2019), with 3%–25% of human cerebral cortical nuclei carrying megabase-scale CNVs (Chronister et al. 2019) and deletions being twice as common as duplications (McConnell et al. 2013). Given that CNVs often arise from nonhomologous recombination and replication errors, their likely time of origin is during brain development. However, when CNVs first arise in human brain development has not yet been investigated. The present work is the first to examine this question using clonal populations of neuronal progenitor cells (NPCs) obtained from fetal human brains.Detection of CNVs in single neurons is challenging, given the need to amplify DNA. Such amplification may introduce artifacts that could, in turn, be misinterpreted as CNVs. In order to address this technical limitation, Hazen et al. reprogrammed adult postmitotic neurons using somatic cell nuclear transfer (SCNT) of neuronal nuclei into enucleated oocytes (Hazen et al. 2016). These oocytes then made sufficient copies of the neuronal genome allowing for whole-genome sequencing (WGS), thus eliminating the need for amplification in vitro. Using this method, they identified a total of nine structural variants in six neurons from mice, three of which were complex rearrangements. However, it is not possible to extend such studies to humans, given the ethical issues involved, besides the technical challenges in obtaining and cloning adult neurons. To circumvent the need of single-cell DNA amplification or nuclear cloning, we examined clonal cell populations obtained from neural progenitor cells from the frontal region of the cerebral cortex (FR), parietal cortex (PA) and basal ganglia (BG) and describe here the discovery and analysis of mosaic SVs in these NPCs (Bae et al. 2018). These clones were sequenced at 30× coverage (much higher than most previous single-cell studies), allowing identification of SVs other than large deletions and duplications as well as precise breakpoint resolution.  相似文献   
58.
Lymphopenia is due to a frameshift mutation in Gimap5 on rat chromosome 4 and is linked to type 1 diabetes in the diabetes prone (DP) BB rat. The hypothesis that bone marrow derived cells confer the lymphopenia phenotype was tested by reciprocal bone marrow transplantation in 40-day-old lethally irradiated diabetes resistant (DR) congenic DR.lyp/lyp (lymphopenia and diabetes) and DR.+/+ (no lymphopenia and no diabetes) rats. In two independent series of transplants, all DR.lyp/lyp rats (n=5 and 4) receiving DR.lyp/lyp bone marrow retained lymphopenia and developed insulitis (5/5 and 4/4) as well as diabetes in some (2/5 and 3/4). Both DR.+/+ and DR.lyp/lyp rats receiving DR.+/+ bone marrow cells as well as DR.+/+ rats receiving DR.lyp/lyp bone marrow cells showed no lymphopenia or diabetes. In accordance with earlier studies in non-congenic BB rats, the DR.+/+ rats receiving DR.lyp/lyp bone marrow cells recapitulated an intermediary phenotype rather than the +/+ or lyp/lyp phenotypes. Our data demonstrate that BBDP rat lymphopenia and diabetes are transferred by bone marrow transplantation to syngeneic DR.lyp/lyp but not DR.+/+ recipients. The intermediary recapitulation of DR.lyp/lyp T cells in recipient DR.+/-/+/- rats suggests that radiation resistant +/-/+/- T cells, the Gimap5 mutation in bone marrow cells, or both may not support the development of lymphopenia.  相似文献   
59.
During embryonic development, a large number of cells die naturally to shape the new organism. Members of the caspase family of proteases are essential intracellular death effectors. Herein, we generated caspase-2-deficient mice to evaluate the requirement for this enzyme in various paradigms of apoptosis. Excess numbers of germ cells were endowed in ovaries of mutant mice and the oocytes were found to be resistant to cell death following exposure to chemotherapeutic drugs. Apoptosis mediated by granzyme B and perforin was defective in caspase-2-deficient B lymphoblasts. In contrast, cell death of motor neurons during development was accelerated in caspase-2-deficient mice. In addition, caspase-2-deficient sympathetic neurons underwent apoptosis more effectively than wild-type neurons when deprived of NGF. Thus, caspase-2 acts both as a positive and negative cell death effector, depending upon cell lineage and stage of development.  相似文献   
60.
The numerical density of senile plaques (SP) and neurofibrillary tangles (NFT) as revealed by the Glees silver method was compared with SP and NFT revealed by the Gallyas method and with amyloid (A4) deposits in immunostained sections in 6 elderly cases of Alzheimer's disease. The density of NFT was generally greater and A4 lower in tissue from hippocampus compared with the neocortex suggesting that A4 deposition was less important than the degree of paired helical filament (PHF) related damage in the hippocampus. The density of Glees SP was positively correlated Gallyas SP weakly correlated with A4 deposit number. A stepwise multiple regression analysis which included A4 deposit and Gallyas SP density and accounted for 54% of the variation in Glees SP density. Hence, different populations of SP were revealed by the different staining methods. The results suggested that the Glees method may stain a population of SP in a region of cortex where both amyloid deposition and neurofibrillary changes have occurred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号