首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3424篇
  免费   277篇
  国内免费   19篇
耳鼻咽喉   11篇
儿科学   75篇
妇产科学   64篇
基础医学   548篇
口腔科学   30篇
临床医学   419篇
内科学   891篇
皮肤病学   31篇
神经病学   273篇
特种医学   61篇
外国民族医学   1篇
外科学   418篇
综合类   67篇
一般理论   8篇
预防医学   273篇
眼科学   52篇
药学   247篇
中国医学   23篇
肿瘤学   228篇
  2023年   21篇
  2022年   54篇
  2021年   115篇
  2020年   64篇
  2019年   87篇
  2018年   87篇
  2017年   68篇
  2016年   74篇
  2015年   87篇
  2014年   87篇
  2013年   149篇
  2012年   248篇
  2011年   269篇
  2010年   137篇
  2009年   120篇
  2008年   187篇
  2007年   217篇
  2006年   177篇
  2005年   159篇
  2004年   153篇
  2003年   124篇
  2002年   127篇
  2001年   103篇
  2000年   105篇
  1999年   60篇
  1998年   43篇
  1997年   45篇
  1996年   33篇
  1995年   16篇
  1994年   20篇
  1993年   27篇
  1992年   58篇
  1991年   44篇
  1990年   46篇
  1989年   33篇
  1988年   41篇
  1987年   28篇
  1986年   27篇
  1985年   27篇
  1984年   17篇
  1983年   19篇
  1982年   20篇
  1981年   10篇
  1980年   11篇
  1979年   16篇
  1978年   9篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1970年   5篇
排序方式: 共有3720条查询结果,搜索用时 31 毫秒
131.
Eurycomanone, an active constituent isolated from Eurycoma longifolia Jack, was examined for modulatory effects on cytochrome P450 (CYP) isoforms CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2E1 and CYP3A4 using in vitro assays. The IC50 value was determined to assess the potencies of modulation for each CYP isoform. Our results indicated that eurycomanone did not potently inhibit any of the CYP isoforms investigated, with IC50 values greater than 250 μg/ml. Hence there appears to be little likelihood of drug–herb interaction between eurycomanone or herbal products with high content of this compound and CYP drug substrates via CYP inhibition.  相似文献   
132.
133.
134.

Purpose

To determine the effect of annealing on the two secondary relaxations in amorphous sucrose and in sucrose solid dispersions.

Methods

Sucrose was co-lyophilized with either PVP or sorbitol, annealed for different time periods and analyzed by dielectric spectroscopy.

Results

In an earlier investigation, we had documented the effect of PVP and sorbitol on the primary and the two secondary relaxations in amorphous sucrose solid dispersions (1). Here we investigated the effect of annealing on local motions, both in amorphous sucrose and in the dispersions. The average relaxation time of the local motion (irrespective of origin) in sucrose, decreased upon annealing. However, the heterogeneity in relaxation time distribution as well as the dielectric strength decreased only for β1- (the slower relaxation) but not for β2-relaxations. The effect of annealing on β2-relaxation times was neutralized by sorbitol while PVP negated the effect of annealing on both β1- and β2-relaxations.

Conclusions

An increase in local mobility of sucrose brought about by annealing could be negated with an additive.  相似文献   
135.
136.
As protein binding of uremic toxins is not well understood, neither in chronic kidney disease (CKD) progression, nor during a hemodialysis (HD) session, we studied protein binding in two cross-sectional studies. Ninety-five CKD 2 to 5 patients and ten stable hemodialysis patients were included. Blood samples were taken either during the routine ambulatory visit (CKD patients) or from blood inlet and outlet line during dialysis (HD patients). Total (CT) and free concentrations were determined of p-cresylglucuronide (pCG), hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS) and p-cresylsulfate (pCS), and their percentage protein binding (%PB) was calculated. In CKD patients, %PB/CT resulted in a positive correlation (all p < 0.001) with renal function for all five uremic toxins. In HD patients, %PB was increased after 120 min of dialysis for HA and at the dialysis end for the stronger (IAA) and the highly-bound (IS and pCS) solutes. During one passage through the dialyzer at 120 min, %PB was increased for HA (borderline), IAA, IS and pCS. These findings explain why protein-bound solutes are difficult to remove by dialysis: a combination of the fact that (i) only the free fraction can pass the filter and (ii) the equilibrium, as it was pre-dialysis, cannot be restored during the dialysis session, as it is continuously disturbed.  相似文献   
137.
138.
B7-H3, a member of the B7 family of the Ig superfamily proteins, is expressed on the surface of the antigen-presenting cells and down-regulates T cell functions by engaging an unknown counterreceptor on T cells. Although B7-H3 is ubiquitously expressed, its potential nonimmune functions have not been addressed. We found that B7-H3 is highly expressed in developing bones during embryogenesis and that its expression increases as osteoblast precursor cells differentiate into mature osteoblasts. In vitro bone formation by osteoblastic cells was inhibited when B7-H3 function was interrupted by the soluble recombinant protein B7-H3-Fc. Analysis of calvarial cells derived from neonatal B7-H3 knockout (KO) mice revealed normal numbers of osteoblast precursor cells possessing a normal proliferative capacity. However, the B7-H3-deficient calvarial cells exhibited impaired osteogenic differentiation, resulting in decreased mineralized bone formation in vitro. These results suggest that B7-H3 is required for the later phase of osteoblast differentiation. Although B7-H3 KO mice had no gross skeletal abnormalities, they displayed a lower bone mineral density in cortical (but not trabecular) bones compared with WT controls. Consistent with the reduced bone mineral density, the femurs of B7-H3 KO mice were more susceptible to bone fracture compared with those of WT mice. Taken together, these results indicate that B7-H3 and its unknown counterreceptor play a positive regulatory role in bone formation. In addition, our findings identified B7-H3 as another molecule that has a dual role in the bone-immune interface.  相似文献   
139.
Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1. We observed the development of a spontaneous T-cell acute lymphoblastic leukemia (T-ALL) in these animals. The disease was transplantable and maintained expression of mutant IDH1. Whole-exome sequencing revealed the presence of a spontaneous activating mutation in Notch1, one of the most common mutations in human T-ALL, suggesting Idh1 mutations may have the capacity to cooperate with Notch1 to drive T-ALL. To further investigate the Idh1 mutation as an oncogenic driver in the T-cell lineage, we crossed Idh1-KI mice with conditional Trp53 null mice, a well-characterized model of T-cell malignancy, and found that T-cell lymphomagenesis was accelerated in mice bearing both mutations. Because both IDH1 and p53 are known to affect cellular metabolism, we compared the requirements for glucose and glutamine in cells derived from these tumors and found that cells bearing the Idh1 mutation have an increased dependence on both glucose and glutamine. These data suggest that mutant IDH1 contributes to malignancy in the T-cell lineage and may alter the metabolic profile of malignant T cells.Somatic mutations in isocitrate dehydrogenase 1 (IDH1) are frequently observed in a number of malignancies, including glioma, cholangiocarcinoma, chondrosarcoma, and several hematological malignancies (1). IDH1 is a cytoplasmic enzyme that catalyzes the NADP-dependent conversion of isocitrate to α-ketoglutarate (αKG). Mutations in IDH1 at arginine 132 (R132) cause an enzymatic gain of function that results in the NADPH-dependent conversion of αKG to d-2-hydroxyglutarate (2HG) (2). This metabolite is normally maintained at very low levels in cells and tissues and is not part of any known productive metabolic pathway. However, in cells and tissues of patients with IDH1 mutant tumors, 2HG builds up to high levels and is thought to contribute to tumorigenesis by inhibiting a class of αKG-dependent enzymes (1). The precise effects important for driving tumorigenesis downstream of IDH1 mutations are not fully understood and may differ between disease states.In the hematopoietic system, IDH1 mutations are most often associated with myeloid diseases, where they are commonly found in myelodysplastic syndrome and acute myeloid leukemia (3). However, IDH1 mutations are also found in a small proportion of adult T-cell acute lymphoblastic leukemia (T-ALL) (4, 5). T-ALL is an aggressive malignancy of developing T cells and is responsible for ∼25% of adult ALL (6, 7). T-ALL is thought to arise via a multistep process of oncogenic mutation that leads to the transformation of immature T cells. The genetic landscape of the disease has been characterized, and a large number of driver mutations have been identified (6). The most common genetic feature of T-ALL is the presence of activating mutations in Notch1, which are present in more than 50% of patients (8). Interestingly, IDH1 mutations seem to be confined to a subset of adult patients with T-ALL bearing an immature T-cell gene expression signature and harboring other oncogenic mutations in genes more commonly associated with myeloid malignancy, including Flt3 and DNMT3A (4, 9). This subset of T-ALL has recently been recognized as a distinct disease entity called early T-cell precursor T-ALL and is associated with therapy resistance and a particularly poor outcome (10). The role of IDH1 mutations in this subset of T-ALL is not understood.Using a myeloid lineage-specific conditional Idh1-R132-KI mouse model, we previously showed that mutant IDH1 partially blocks differentiation and produces a hematopoietic phenotype similar to human myelodysplastic syndrome (11). In this study, we crossed the Idh1-R132-KI mouse with Vav-cre animals to introduce the IDH1 R132 mutation into the entire hematopoietic system to investigate the role of Idh1 mutations in T-cell malignancy.  相似文献   
140.
目前对心房颤动(简称房颤)机制的基本认识有①局灶起源机制;②多子波折返机制;③主导折返环机制。以这些机制为指导的消融治疗房颤,存在消融时间长、并发症多,且成功率不高的缺点。因此,人们在不断地探索新的标测方法。由于各个研究中心所采取的标测方法和技术不同,出现以复杂碎裂心房电图区、房颤巢、主频点以及心脏神经丛为消融靶点的治疗方法。这些方法均取得了较好的疗效,又对房颤的机制有了更深入的认识。从所有方法标测的部位上看,似乎这些方法均有联系,均与心脏神经丛关联。如果能透过这些现象认识到房颤的本质,那么就有可能找到消融治疗房颤的简单方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号