首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
耳鼻咽喉   2篇
妇产科学   5篇
基础医学   30篇
口腔科学   4篇
临床医学   15篇
内科学   22篇
神经病学   3篇
特种医学   2篇
外科学   2篇
预防医学   6篇
药学   1篇
肿瘤学   4篇
  2022年   2篇
  2021年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1967年   3篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
51.
In some patients with stable and unstable angina pectoris and in some donors without clinical manifestations of cardiovascular diseases and other pathologies, spontaneous platelet aggregation was completely suppressed by glycoprotein IIb-IIIa antagonists blocking the interaction of this glycoprotein with fibrinogen. Antibodies inhibiting binding of glycoprotein Ib with von Willebrand factor had no effect on the level and rate of spontaneous platelet aggregation. In the donor group, the level of spontaneous aggregation was almost 1.5-fold higher in persons with a certain genetic polymorphism (Leu-->Pro substitution in position 33 of glycoprotein IIIa). The level of spontaneous aggregation correlated with the amount of glycoprotein IIb-IIIa on the platelet surface (r = 0.41).  相似文献   
52.
Ferroelectric materials have gained high interest for photovoltaic applications due to their open-circuit voltage not being limited to the band gap of the material. In the past, different lead-based ferroelectric perovskite thin films such as Pb(Zr,Ti)O3 (Pb,La)(Zr,Ti)O3 and PbTiO3 were investigated with respect to their photovoltaic efficiency. Nevertheless, due to their high band gaps they only absorb photons in the UV spectral range. The well-known ferroelectric PbFe0.5Nb0.5O3 (PFN), which is in a structure similar to the other three, has not been considered as a possible candidate until now. We found that the band gap of PFN is around 2.75 eV and that the conductivity can be increased from 23 S/µm to 35 S/µm during illumination. The relatively low band gap value makes PFN a promising candidate as an absorber material.  相似文献   
53.
Polymer materials are actively used in dielectric capacitors, in particular for energy storage applications. An enhancement of the stored energy density can be achieved in composites of electroactive polymers and dielectric inorganic fillers with a high dielectric permittivity. In this article, we report on the energy storage characteristics of composites of relaxor terpolymer P(VDF-TrFE-CFE) and BaZr0.2Ti0.8O3 (BZT) nanoparticles. The choice of materials was dictated by their large dielectric permittivity in the vicinity of room temperature. Free-standing composite films, with BZT contents up to 5 vol.%, were prepared by solution casting. The dielectric properties of the composites were investigated over a wide range of frequencies and temperatures. It was shown that the addition of the BZT nanoparticles does not affect the relaxor behavior of the polymer matrix, but significantly increases the dielectric permittivity. The energy storage parameters were estimated from the analysis of the unipolar polarization hysteresis loops. The addition of the BZT filler resulted in the increasing discharge energy density. The best results were achieved for composites with 1.25–2.5 vol.% of BZT. In the range of electric fields to 150 MV/m, the obtained materials demonstrate a superior energy storage density compared to other P(VDF-TFE-CFE) based composites reported in the literature.  相似文献   
54.
Cortical pyramidal neurons possess a persistent Na+ current (INaP), which, in contrast to the larger transient current, does not undergo rapid inactivation. Although relatively quite small, INaP is active at subthreshold voltages and therefore plays an important role in neuronal input–output processing. The subcellular distribution of channels responsible for INaP and the mechanisms that render them persistent are not known. Using high-speed fluorescence Na+ imaging and whole-cell recordings in brain slices obtained from mice of either sex, we reconstructed the INaP elicited by slow voltage ramps in soma and processes of cortical pyramidal neurons. We found that in all neuronal compartments, the relationship between persistent Na+ conductance and membrane voltage has the shape of a Boltzmann function. Although the density of channels underlying INaP was about twofold lower in the axon initial segment (AIS) than in the soma, the axonal channels were activated by ∼10 mV less depolarization than were somatic channels. This difference in voltage dependence explains why, at functionally critical subthreshold voltages, most INaP originates in the AIS. Finally, we show that endogenous polyamines constrain INaP availability in both somatodendritic and axonal compartments of nondialyzed cortical neurons.SIGNIFICANCE STATEMENT The most salient characteristic of neuronal sodium channels is fast inactivation. However, a fraction of the sodium current does not inactivate. In cortical neurons, persistent current (INaP) plays a prominent role in many important functions. Its subcellular distribution and generation mechanisms are, however, elusive. Using high-speed fluorescence Na+ imaging and electrical recordings, we reconstructed the INaP in soma and processes of cortical pyramidal neurons. We found that at near-threshold voltages INaP originates predominately from the axon, because of the distinctive voltage dependence of the underlying channels and not because of their high density. Finally, we show that the presence of endogenous polyamines significantly constrains INaP availability in all compartments of nondialyzed cortical neurons.  相似文献   
55.
We analyze pattern formation in the model of cell communication in Drosophila egg development. The model describes the regulatory network formed by the epidermal growth factor receptor (EGFR) and its ligands. The network is activated by the oocyte-derived input that is modulated by feedback loops within the follicular epithelium. We analyze these dynamics within the framework of a recently proposed mathematical model of EGFR signaling (Shvartsman et al. [2002] Development 129:2577-2589). The emphasis is on the large-amplitude solutions of the model that can be correlated with the experimentally observed patterns of protein and gene expression. Our analysis of transitions between the major classes of patterns in the model can be used to interpret the experimentally observed phenotypic transitions in eggshell morphology in Drosophila melanogaster. The existence of complex patterns in the model can be used to account for complex eggshell morphologies in related fly species.  相似文献   
56.
57.
58.
Cell delivery to the infarcted heart has emerged as a promising therapy, but is limited by very low acute retention and engraftment of cells. The objective of this study was to compare a panel of biomaterials to evaluate if acute retention can be improved with a biomaterial carrier. Cells were quantified post-implantation in a rat myocardial infarct model in five groups (n = 7–8); saline injection (current clinical standard), two injectable hydrogels (alginate, chitosan/β-glycerophosphate (chitosan/ß-GP)) and two epicardial patches (alginate, collagen). Human mesenchymal stem cells (hMSCs) were delivered to the infarct border zone with each biomaterial. At 24 h, retained cells were quantified by fluorescence. All biomaterials produced superior fluorescence to saline control, with approximately 8- and 14-fold increases with alginate and chitosan/β-GP injectables, and 47 and 59-fold increases achieved with collagen and alginate patches, respectively. Immunohistochemical analysis qualitatively confirmed these findings. All four biomaterials retained 50–60% of cells that were present immediately following transplantation, compared to 10% for the saline control. In conclusion, all four biomaterials were demonstrated to more efficiently deliver and retain cells when compared to a saline control. Biomaterial-based delivery approaches show promise for future development of efficient in vivo delivery techniques.  相似文献   
59.
60.
A combined preparation for influenza prevention (CPIP) consisting of an interferon inducer stimulating immunogenesis and killed influenza vaccine is proposed. Twenty five inducers-stimulators have been tested: polynucleotides, polysaccharide and lipopolysaccharide extracted from Salmonella typhosa. Intranasal administration of CPIP to laboratory animals markedly stimulates interferon, secretory, and circulating antibody synthesis. Resistance to fatal influenza infection develops within 18 hours after administration of CPIP and its intensity increases in the following 14 days (the observation period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号