首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2972篇
  免费   154篇
  国内免费   99篇
耳鼻咽喉   17篇
儿科学   93篇
妇产科学   85篇
基础医学   333篇
口腔科学   64篇
临床医学   354篇
内科学   669篇
皮肤病学   28篇
神经病学   179篇
特种医学   194篇
外科学   331篇
综合类   69篇
一般理论   1篇
预防医学   231篇
眼科学   72篇
药学   260篇
中国医学   3篇
肿瘤学   242篇
  2022年   26篇
  2021年   48篇
  2020年   25篇
  2019年   25篇
  2018年   45篇
  2017年   32篇
  2016年   43篇
  2015年   43篇
  2014年   75篇
  2013年   98篇
  2012年   150篇
  2011年   132篇
  2010年   105篇
  2009年   100篇
  2008年   127篇
  2007年   153篇
  2006年   115篇
  2005年   111篇
  2004年   95篇
  2003年   85篇
  2002年   82篇
  2001年   83篇
  2000年   70篇
  1999年   63篇
  1998年   61篇
  1997年   62篇
  1996年   42篇
  1995年   43篇
  1994年   38篇
  1993年   45篇
  1992年   48篇
  1991年   61篇
  1990年   51篇
  1989年   62篇
  1988年   71篇
  1987年   58篇
  1986年   61篇
  1985年   61篇
  1984年   35篇
  1983年   28篇
  1982年   23篇
  1981年   22篇
  1980年   26篇
  1979年   39篇
  1978年   33篇
  1977年   30篇
  1974年   27篇
  1973年   34篇
  1971年   30篇
  1968年   22篇
排序方式: 共有3225条查询结果,搜索用时 0 毫秒
31.
白首乌化学成分的研究   总被引:11,自引:0,他引:11  
自白首乌主要品种耳叶牛皮消(Cynanchum auriculatum Royle ex Wight)根中首次分得三个已知甾体酯型甙元:告达亭(caudatin),开德甙元(kidjolanin),萝藦甙元(Metaplexigenin)和一种新的二苯酮衍生物(Ⅳ),经光谱分析推定其结构为2,6,2′,5′-四羟基,3-乙酰基,6′-甲基二苯酮,命名白首乌二苯酮。  相似文献   
32.
BackgroundIn the current study, we examined the real-world prevalence of highly pigmented advanced melanomas (HPMel) and the clinicopathologic, genomic, and ICPI biomarker signatures of this class of tumors.Materials and MethodsOur case archive of clinical melanoma samples for which the ordering physician requested testing for both PD-L1 immunohistochemistry (IHC) and comprehensive genomic profiling (CGP) was screened for HPMel cases, as well as for non-pigmented or lightly pigmented advanced melanoma cases (LPMel).ResultsOf the 1268 consecutive melanoma biopsies in our archive that had been submitted for PD-L1 IHC, 13.0% (165/1268) were HPMel and 87.0% (1103/1268) were LPMel. In the HPMel cohort, we saw a significantly lower tumor mutational burden (TMB, median 8.8 mutations/Mb) than in the LPMel group (11.4 mut/Mb), although there was substantial overlap. In examining characteristic secondary genomic alterations (GA), we found that the frequencies of GA in TERTp, CDKN2A, TP53, and PTEN were significantly lower in the HPMel cases than in LPMel. A higher rate of GA in CTNNB1, APC, PRKAR1A, and KIT was identified in the HPMel cohort compared with LPMel.ConclusionsIn this study, we quantified the failure rates of melanoma samples for PD-L1 testing due to high melanin pigmentation and showed that CGP can be used in these patients to identify biomarkers that can guide treatment decisions for HPMel patients. Using this practical clinical definition for tumor pigmentation, our results indicate that HPMel are frequent at 13% of melanoma samples, and in general appear molecularly less developed, with a lower TMB and less frequent secondary GA of melanoma progression.  相似文献   
33.
Journal of Molecular Medicine -  相似文献   
34.
35.
36.
AimsThis article aims to explore the ways in which diagnostic radiographers use distancing as a tool for emotional management in radiography practice.MethodsThis review utilises data from oral history interviews undertaken as part of a larger study documenting the oral history of the diagnostic radiography profession in the United Kingdom as recounted by 24 participants.ResultsThe results are presented as illustrative of various aspects of the role of the diagnostic radiographer including the initial choice of diagnostic radiography as a profession, the endemic use of particular terminology, the nature of the encounter in diagnostic radiography (including that of sectional imaging) and whether the role is really patient-centred.ConclusionsThe article concludes by suggesting that distancing from the patient is mediated by the need for physical touch in order to position the patient for radiography and also makes the suggestion that those opting for diagnostic radiography as a career may do so because they want a profession which is more distanced from the patient and that, even where this is not the case initially, individuals are socialised into adopting the ‘feeling rules’ of the profession. The article concludes by outlining potential areas for further research.  相似文献   
37.
38.
39.
40.
As populations boom and bust, the accumulation of genetic diversity is modulated, encoding histories of living populations in present-day variation. Many methods exist to decode these histories, and all must make strong model assumptions. It is typical to assume that mutations accumulate uniformly across the genome at a constant rate that does not vary between closely related populations. However, recent work shows that mutational processes in human and great ape populations vary across genomic regions and evolve over time. This perturbs the mutation spectrum (relative mutation rates in different local nucleotide contexts). Here, we develop theoretical tools in the framework of Kingman’s coalescent to accommodate mutation spectrum dynamics. We present mutation spectrum history inference (mushi), a method to perform nonparametric inference of demographic and mutation spectrum histories from allele frequency data. We use mushi to reconstruct trajectories of effective population size and mutation spectrum divergence between human populations, identify mutation signatures and their dynamics in different human populations, and calibrate the timing of a previously reported mutational pulse in the ancestors of Europeans. We show that mutation spectrum histories can be placed in a well-studied theoretical setting and rigorously inferred from genomic variation data, like other features of evolutionary history.

Over the past decade, population geneticists have developed many sophisticated methods for inferring population demography and have consistently found that simple isolated populations of constant size are far from the norm (reviewed in refs. 13). Population expansions and founder events, as well as migration between species and geographic regions, have been inferred from virtually all high-resolution genetic datasets. We now recognize that inferring these nonequilibrium demographies is often essential for understanding the histories of adaptation and global migration. Population genetics has uncovered many features of human history that were once virtually unknowable by other means, revealing a complex series of migrations, population replacements, and admixture networks among human groups and extinct hominoids.Although demographic inference methods can model complex population histories, the germline mutation process that creates variation has long received a comparatively simple treatment. A single parameter, μ, is used to represent the mutation rate per generation at all loci, in all individuals, and at all times. In humans, μ is estimated from parent–child trio sequencing studies, and modest variation in μ can have major effects on the interpretation of inferred parameters, such as times of admixture and population divergence. In other organisms, for which trio sequence data are usually unavailable, μ is estimated from sequence divergence between species with a fossil-calibrated divergence time, and these estimates come with still higher uncertainty.A growing body of evidence indicates that simple, constant mutation rate models may not adequately describe how variation accumulates on either inter- or intraspecific timescales (47). Germline mutation rates appear to have evolved during the speciation of great apes and the divergence of modern human populations (reviewed in ref. 8). Much of this evolution might be caused by nearly neutral drift (9), but a contributing factor could be selection on traits, like life history and chromatin structure, that indirectly affect mutation accumulation. Because mutation is intimately tied to the basic housekeeping process of cell division, gamete production, and embryonic development, the accumulation of mutations is likely to be complexly coupled to other biological processes (1012).It is difficult to disentangle past changes in mutation rate from past changes in effective population size, which modulate levels of polymorphism even when the mutation rate stays constant. However, evolution of the mutation process can be indirectly detected by measuring its effects on the mutation spectrum: the relative mutation rates among different local nucleotide contexts. Hwang and Green (13) modeled the triplet context dependence of the substitution process in a mammalian phylogeny, finding varying contributions from replication errors, cytosine deamination, and biased gene conversion and showing that the relative rates of these processes varied between different mammalian lineages. Many cancers also exhibit somatic hypermutability of certain triplet motifs due to different DNA damage agents and failure points in the DNA repair process (14, 15). Harris (6) and Harris and Pritchard (7) examined the variation of triplet spectra between closely related populations, counting single-nucleotide variants in each triplet mutation type as a proxy for mutational input. They found that human triplet spectra distinctly cluster by continental ancestry group and that historical pulses in mutation activity influence the distribution of allele frequencies in certain mutation types. The divergence of mutation spectra among human continental groups has been replicated in independently generated datasets (7, 16), and similar patterns have been observed in other species, including great apes (17), mice (18), and yeast (19). Some of the mutation spectrum divergence between mice and yeast lineages has been mapped to mutator alleles (19, 20).Emerging from the literature is a picture of a mutation process evolving within and between populations, anchored to genomic features and accented by spectra of local nucleotide context. If probabilistic models of population genetic processes are to keep pace with these empirical findings, mutation deserves a richer treatment in state-of-the-art inference tools. In this paper, we build on classical theoretical tools to introduce fast nonparametric inference of population-level mutation spectrum history (MuSH)—the relative mutation rate in different local nucleotide contexts across time—alongside inference of demographic history. Whereas previous work has uncovered mutation spectrum evolution using summary statistics of standing variation, we shift perspective to focus on inference of the MuSH, which we model on the same footing as demography.Demographic inference requires us to invert the map that takes population history to the patterns of genetic diversity observable today. This task is often simplified by first compressing these genetic diversity data into a summary statistic such as the sample frequency spectrum (SFS), the distribution of derived allele frequencies among sampled haplotypes. The SFS is a well-studied population genetic summary statistic that is sensitive to demographic history. Inverting the map from demographic history to SFS is a notoriously ill-posed problem, in that many different population histories can have identical expected SFS (2125). One way to deal with the ill posedness of demographic inference is to specify a parametric model of population size change, usually piecewise linear or piecewise exponential. An alternative, which generalizes to other inverse problems, is to allow a more general space of solutions but to regularize by penalizing histories that contain biologically unrealistic features (e.g., high-frequency population size oscillations). Both approaches shrink the set of feasible solutions to the inverse problem so that it becomes well posed and can be thought of as leveraging prior knowledge. In particular, regularization constrains the population size from changing on arbitrarily small timescales since significant population size change usually takes at least a few generations.In this paper, we extend a coalescent framework for demographic inference to accommodate inference of the MuSH from an SFS that is resolved into different local k-mer nucleotide contexts. This is a richer summary statistic that we call the k-SFS where, for example, k=3 means triplet context. We show using coalescent theory that the k-SFS is related to the MuSH by a linear transformation while depending nonlinearly on the demographic history. We infer both demographic history and MuSH by optimizing a cost that balances a data-fitting term using the forward map from coalescent theory, along with regularization terms that favor solutions with low complexity. Our open-source software mushi (mutation spectrum history inference) is available in ref. 26 as a Python package with extensive documentation. Using default settings and modest hardware, mushi takes only a few seconds to infer histories from population-scale sample frequency data.The recovered MuSH is a rich object that illuminates dimensions of population history and addresses biological questions about the evolution of the mutation process. After validating with data simulated under known histories, we use mushi to independently infer histories for each of the 26 populations (from 5 superpopulations defined by continental ancestry) from the 1000 Genomes Project (1KG) Consortium (27) using recent high-coverage sequencing data (28). We demonstrate that mushi is a powerful tool for demographic inference that has several advantages over existing demographic inference methods and then go on to describe the illuminated features of human MuSH.We recover demographic features that are robust to regularization parameter choices, including the out-of-Africa event and the more recent bottleneck in the ancestors of modern Finns, and we find that effective population sizes converge ancestrally within each superpopulation, despite being inferred independently. Decomposing human MuSH into mutation signatures varying through time in each population, we see global divergence in the mutation process that impacts many mutation types and reflects population and superpopulation relatedness. Finally, we revisit the timing of a previously reported ancient pulse of elevated TCC TTC mutation rate, active primarily in the ancestors of Europeans and absent in East Asians (6, 7, 29, 30). We find that the extent of the pulse into the ancient past is sensitive to the choice of demographic history model but that all demographic models that fit the k-SFS yield a pulse timing that is significantly older than previously thought, seemingly arising near the divergence time of East Asians and Europeans.With mushi, we can quickly reconstruct demographic history and MuSH without strong model specification requirements. This adds an approach to the toolbox for researchers interested only in demographic inference. For researchers studying the mutation spectrum, demographic history is necessary for time calibration of events in mutation history, so we expect that jointly modeling demography and MuSH will be important for studying mutational spectrum evolution in population genetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号