首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   35篇
耳鼻咽喉   2篇
儿科学   4篇
妇产科学   2篇
基础医学   78篇
口腔科学   21篇
临床医学   24篇
内科学   75篇
皮肤病学   3篇
神经病学   8篇
特种医学   23篇
外科学   9篇
综合类   1篇
预防医学   18篇
眼科学   17篇
药学   10篇
肿瘤学   14篇
  2021年   9篇
  2020年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   16篇
  2010年   7篇
  2009年   5篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   12篇
  2003年   6篇
  2002年   8篇
  2001年   7篇
  2000年   11篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   6篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
  1973年   12篇
  1972年   8篇
  1970年   7篇
  1968年   2篇
  1967年   4篇
  1966年   4篇
排序方式: 共有309条查询结果,搜索用时 18 毫秒
301.
Background Soft tissue sarcomas (STS) are generally considered non-immunogenic, although specific subtypes respond to immunotherapy. Antitumour response within the tumour microenvironment relies on a balance between inhibitory and activating signals for tumour-infiltrating lymphocytes (TILs). This study analysed TILs and immune checkpoint molecules in STS, and assessed their prognostic impact regarding local recurrence (LR), distant metastasis (DM), and overall survival (OS).Methods One-hundred and ninety-two surgically treated STS patients (median age: 63.5 years; 103 males [53.6%]) were retrospectively included. Tissue microarrays were constructed, immunohistochemistry for PD-1, PD-L1, FOXP3, CD3, CD4, and CD8 performed, and staining assessed with multispectral imaging. TIL phenotype abundance and immune checkpoint markers were correlated with clinical and outcome parameters (LR, DM, and OS).Results Significant differences between histology and all immune checkpoint markers except for FOXP3+ and CD3−PD-L1+ cell subpopulations were found. Higher levels of PD-L1, PD-1, and any TIL phenotype were found in myxofibrosarcoma as compared to leiomyosarcoma (all p < 0.05). The presence of regulatory T cells (Tregs) was associated with increased LR risk (p = 0.006), irrespective of margins. Other TILs or immune checkpoint markers had no significant impact on outcome parameters.Conclusions TIL and immune checkpoint marker levels are most abundant in myxofibrosarcoma. High Treg levels are independently associated with increased LR risk, irrespective of margins.Subject terms: Tumour biomarkers, Prognostic markers  相似文献   
302.
Rees TD  Rossmann JA 《Journal of the American Dental Association (1939)》2012,143(7):734, 736; author reply 736, 738-734, 736; author reply 736, 739
  相似文献   
303.
Effects of CO2 laser irradiation on gingiva   总被引:1,自引:0,他引:1  
A CO2 laser (Coherent Medical Model 400) was used to irradiate the gingival tissue of a cynomolgous monkey to determine laser effects on the epithelium and underlying connective tissue. A focal length of 400 mm and a 10-watt power setting at 0.2- and 0.5-second exposure was used. Biopsy results indicated that a 0.2-second duration of CO2 laser irradiation was inadequate to completely de-epithelialize the gingival tissue. A 0.5-second exposure exhibited complete epithelial destruction with little or no disturbance of the underlying connective tissue layer and viable connective tissue 1.0 mm below the impact site.  相似文献   
304.
Bacteriophage T4 consists of a head for protecting its genome and a sheathed tail for inserting its genome into a host. The tail terminates with a multiprotein baseplate that changes its conformation from a “high-energy” dome-shaped to a “low-energy” star-shaped structure during infection. Although these two structures represent different minima in the total energy landscape of the baseplate assembly, as the dome-shaped structure readily changes to the star-shaped structure when the virus infects a host bacterium, the dome-shaped structure must have more energy than the star-shaped structure. Here we describe the electron microscopy structure of a 3.3-MDa in vitro-assembled star-shaped baseplate with a resolution of 3.8 Å. This structure, together with other genetic and structural data, shows why the high-energy baseplate is formed in the presence of the central hub and how the baseplate changes to the low-energy structure, via two steps during infection. Thus, the presence of the central hub is required to initiate the assembly of metastable, high-energy structures. If the high-energy structure is formed and stabilized faster than the low-energy structure, there will be insufficient components to assemble the low-energy structure.Most bacteriophages have a tail. At the distal end of the tail there is usually a baseplate that is decorated by some fibers (1). The baseplate initiates infection when the tail fibers bind to a host cell. Signals are transmitted from the tail fibers via the baseplate to the tail that then trigger the ejection of the phage genome from the head into the host cell through the tail tube. Two evolutionary related structures, of pyocin (2, 3) and of the type VI secretion system (4, 5), are found in bacteria as defense systems to kill competing bacteria. These structures are remarkably similar to the tail baseplate structure of bacteriophages, suggesting that tail baseplate-like structures are effective organelles for infecting bacteria (6, 7).T4 is a member of the Myoviridae family of bacteriophages. These phages have a sheath around the tail tube that contracts during infection (Fig. 1) (8). T4 has a complex baseplate that is essential for assuring a highly efficient infection mechanism (8). After recognition of an Escherichia coli host cell by some of the six long-tail fibers (LTF), the short-tail fibers (STF) that are a part of the baseplate, bind irreversibly to the cell. This process is accompanied by a large conformational change in the baseplate from a “high-energy” dome- to a “low-energy” star-shaped structure (9, 10), although each of these structures represent an energy minimum in the energy landscape of the baseplate assembly. This change triggers contraction of the tail sheath, driving the tail tube into the outer host cell membrane and further across the periplasmic space to the inner membrane. The genomic DNA is then ejected into the host’s cytoplasm. Hence, the baseplate serves as the nerve center for transmitting signals from the tail fibers to the head for the release of DNA into the host.Open in a separate windowFig. 1.Schematic diagram of bacteriophage T4. Bacteriophage T4 has a contractile tail and a complex baseplate. Six long-tail fibers are attached to the upper part of the baseplate and six short-tail fibers are folded under the baseplate before infection. Reproduced with permission from ref. 50, copyright American Society for Microbiology.The hexagonal dome-shaped T4 baseplate assembles from six wedges surrounding a central hub (8). A total of 134 protein subunits from 15 different proteins form the ∼6.5-MDa baseplate (8, 11). The structure of the T4 baseplate has been studied extensively by cryoelectron microscopy (cryo-EM) of the whole virus and X-ray crystallography of individual proteins (12). Cryo-EM maps of the baseplate when in the dome- (9) and star-shaped (10) conformations were previously reported to 12 Å and 16 Å resolution, respectively. The dome-shaped baseplate was found to be ∼520 Å in diameter and ∼270 Å high, whereas the diameter and height of the star-shaped baseplate were ∼610 Å and ∼120 Å, respectively.

Table S1.

List of the baseplate proteins, their position and interacting protein partners in the tail and their putative role
ProteinNo. of residueOligomeric state in solutionPosition and interacting protein partner(s)Putative role
gp5575TrimerHubLysis of host cell membrane
gp5.4, gp27
gp5.497MonomerDistal end of the tailPuncturing of host cell membrane
gp5
gp6660DimerWedgeInter wedge interaction and wedge to hub interaction
gp7, gp8, gp25, gp27, gp53
gp71032MonomerWedgeConnecting the wedge proteins
gp6, gp8, gp9, gp10, gp53
gp8334DimerWedgeRaising the baseplate periphery
gp6, gp7, gp10
gp9288TrimerWedgeAttachment of LTF
gp7, LTF
gp10602TrimerWedgeAttachment of STF
gp7, gp8, gp11, gp12
gp11219TrimerBaseplate peripheryBending and attachment of STF
gp10, gp12
gp12 (STF)527TrimerBaseplate peripheryIrreversible binding to host cell receptor
gp10, gp11
gp25132MonomerWedgeInitiation of the tail sheath polymerization
gp6, gp18, gp48–gp54, gp53
gp27391TrimerHubWedge to hub interaction
gp5, gp6, gp48–gp54
gp29590NDHubTail length determination
gp3, gp19, gp48–gp54
gp48364NDHubTermination of baseplate assembly
gp19, gp25, gp27, gp29, gp54
gp53196MonomerWedgeHolding of inter wedge junction
gp6, gp7, gp25
gp54320NDHubInitiation of the tail tube polymerization
gp19, gp27, gp29, gp48
Open in a separate windowLTF, long-tail fiber; STF, short tail fiber; ND, not determined.The assembly of a wedge had been shown to follow a strictly ordered sequence. First, an initial complex is formed by a monomer of gp7 and a trimer of gp10, followed sequentially by binding of a dimer of gp8 and a dimer of gp6 to the complex (13, 14). In the absence of a central hub, at least five proteins (gp7, gp10, gp8, gp6, and gp53) are required for assembly of wedges in vitro into a star-shaped, low-energy baseplate-like structure (14). Assembly of the high-energy, dome-shaped structure requires the presence of the central hub. However, how the sequential wedge assembly events are regulated remained unknown. In particular, the question remained how the high-energy dome-shaped baseplate could assemble.We report here a 3.8-Å resolution 3D cryo-EM map of a ∼3.3-MDa in vitro-assembled star-shaped, hubless, baseplate-like complex (Fig. 2). The component proteins of this in vitro-assembled baseplate were gp7, gp10, gp8, gp6, and gp53. We show that gp7 provides the primary control of the sequential assembly events that regulate the conformational changes of the baseplate during assembly and during infection. We also show that interaction between gp6 and gp27 in associating the wedges around the central hub is the critical nucleation step to form the high-energy dome-shaped baseplate. Furthermore, we describe that the transition of the baseplate from the dome-shaped to the star-shaped conformations probably occurs in two steps.Open in a separate windowFig. 2.Cryo-EM 3D reconstruction of the in vitro-assembled hubless baseplate. (A) The cryo-EM density showing the various proteins colored according to the index at the bottom left. (B) Ribbon representation of the protein structures in a single wedge using the same color code. Domains II and III of gp10 are shown as cryo-EM density.  相似文献   
305.
Anticancer drugs kill susceptible cells through induction of apoptosis. Alterations of apoptotic pathways in drug-resistant tumor cells leading to apoptosis deficiency might represent a potent mechanism conferring drug resistance. We have assessed the effect of etoposide and cisplatin on the apoptotic pathways of the drug-sensitive human melanoma cell line MeWo as well as its etoposide- and cisplatin-resistant sublines (MeWo(Eto01), MeWo(Eto1), (and) MeWoCis01, MeWo(Cis1)). Etoposide and cisplatin induced apoptosis in drug-sensitive MeWo cells as indicated by dose-dependent (i) cytochrome c release, (ii) caspase activation, (iii) DNA fragmentation, and (iv) cleavage of poly(ADP-ribose)polymerase. In contrast, whereas low etoposide-resistant cells (MeWo(Eto01)) demonstrated reduced but detectable apoptotic activities, highly etoposide-resistant cells (MeWo(Eto1)) did not exhibit any of the apoptotic events observed in etoposide-induced cell death downstream of a strongly reduced cytochrome c release. Highly cisplatin-resistant cells (MeWo(Cis1)), however, demonstrated a reduced caspase 9 activity and cytochrome c release but the extent of effector caspase activation as well as DNA fragmentation was comparable to that of sensitive MeWo cells at equitoxic concentrations. In addition, poly(ADP-ribose)polymerase cleavage was strongly reduced in highly cisplatin-resistant sublines. Taken together, sensitive and drug-resistant MeWo cells utilized different apoptotic pathways upon drug exposure in a drug-dependent fashion and apoptosis deficiency was strongly associated with the drug-resistant phenotype.  相似文献   
306.
APC(min/+) mice, carrying a nonsense mutation in the adenomatous polyposis coli (APC) gene, appear as a perfect model to study development or therapy of intestinal neoplasia. We tested whether the flavonoid flavone is able to affect adenoma development in APC(min/+) mice. Tumor sizes were significantly increased by flavone selectively in small intestine. This was associated with reduced cell numbers displaying cleaved caspase-3 and enhanced expression of phosphoglycoprotein (P-gp). However, according to great variability in P-gp expression in all parts of mice intestines, an association between expression of P-gp and inhibition of apoptosis was demonstrated in human Caco-2 colorectal cancer cells.  相似文献   
307.
Most phagocytic protist viruses have large particles and genomes as well as many laterally acquired genes that may be associated with a sympatric intracellular life (a community-associated lifestyle with viruses, bacteria, and eukaryotes) and the presence of virophages. By subculturing Mimivirus 150 times in a germ-free amoebal host, we observed the emergence of a bald form of the virus that lacked surface fibers and replicated in a morphologically different type of viral factory. When studying a 0.40-μm filtered cloned particle, we found that its genome size shifted from 1.2 (M1) to 0.993 Mb (M4), mainly due to large deletions occurring at both ends of the genome. Some of the lost genes are encoding enzymes required for posttranslational modification of the structural viral proteins, such as glycosyltransferases and ankyrin repeat proteins. Proteomic analysis allowed identification of three proteins, probably required for the assembly of virus fibers. The genes for two of these were found to be deleted from the M4 virus genome. The proteins associated with fibers are highly antigenic and can be recognized by mouse and human antimimivirus antibodies. In addition, the bald strain (M4) was not able to propagate the sputnik virophage. Overall, the Mimivirus transition from a sympatric to an allopatric lifestyle was associated with a stepwise genome reduction and the production of a predominantly bald virophage resistant strain. The new axenic ecosystem allowed the allopatric Mimivirus to lose unnecessary genes that might be involved in the control of competitors.  相似文献   
308.
The tailed bacteriophage 29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 ? in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 ?. The structure is about 150 ? long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless 29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.  相似文献   
309.
Metagenomic approaches are currently being used to decipher the genome of the microbiota (microbiome), and, in parallel, functional studies are being performed to analyze the effects of the microbiota on the host. Gnotobiological methods are an indispensable tool for studying the consequences of bacterial colonization. Animals used as models of human diseases can be maintained in sterile conditions (isolators used for germ-free rearing) and specifically colonized with defined microbes (including non-cultivable commensal bacteria). The effects of the germ-free state or the effects of colonization on disease initiation and maintenance can be observed in these models. Using this approach we demonstrated direct involvement of components of the microbiota in chronic intestinal inflammation and development of colonic neoplasia (i.e., using models of human inflammatory bowel disease and colorectal carcinoma). In contrast, a protective effect of microbiota colonization was demonstrated for the development of autoimmune diabetes in non-obese diabetic (NOD) mice. Interestingly, the development of atherosclerosis in germ-free apolipoprotein E (ApoE)-deficient mice fed by a standard low-cholesterol diet is accelerated compared with conventionally reared animals. Mucosal induction of tolerance to allergen Bet v1 was not influenced by the presence or absence of microbiota. Identification of components of the microbiota and elucidation of the molecular mechanisms of their action in inducing pathological changes or exerting beneficial, disease-protective activities could aid in our ability to influence the composition of the microbiota and to find bacterial strains and components (e.g., probiotics and prebiotics) whose administration may aid in disease prevention and treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号