BACKGROUND AND PURPOSE:Transradial access for neurointerventional procedures has been proved a safer and more comfortable alternative to femoral artery access. We present our experience with transradial (distal radial/anatomic snuffbox and radial artery) access for treatment of intracranial aneurysms using all 3 FDA-approved flow diverters.MATERIALS AND METHODS:This was a high-volume, dual-center, retrospective analysis of each institution’s data base between June 2018 and June 2020 and a collection of all patients treated with flow diversion via transradial access. Patient demographic information and procedural and radiographic data were obtained.RESULTS:Seventy-four patients were identified (64 female patients) with a mean age of 57.5 years with a total of 86 aneurysms. Most aneurysms were located in the anterior circulation (93%) and within the intracranial ICA (67.4%). The mean aneurysm size was 5.5 mm. Flow diverters placed included the Pipeline Embolization Device (Flex) (PED, n = 65), the Surpass Streamline Flow Diverter (n = 8), and the Flow-Redirection Endoluminal Device (FRED, n = 1). Transradial access was successful in all cases, but femoral crossover was required in 3 cases (4.1%) due to tortuous anatomy and inadequate support of the catheters in 2 cases and an inability to navigate to the target vessel in a patient with an aberrant right subclavian artery. All 71 other interventions were successfully performed via the transradial approach (95.9%). No access site complications were encountered. Asymptomatic radial artery occlusion was encountered in 1 case (3.7%).CONCLUSIONS:Flow diverters can be successfully placed via the transradial approach with high technical success, low access site complications, and a low femoral crossover rate.The transradial access (TRA), including distal radial artery (dRA) access in the anatomic snuffbox and radial artery (RA) access at the palmar surface of the wrist, is being increasingly used as primary vascular access for neurointerventional procedures. In prior years, large randomized trials in the field of interventional cardiology and more recent articles in neurointerventional surgery have shown higher patient preference for the TRA, cost reduction, as well as lower morbidity and mortality compared with the traditional transfemoral access (TFA).1-11 Reduction in access site complications has been a particular advantage of wrist over femoral access and is an important consideration for vascular access choice in the treatment of intracranial aneurysms using flow diversion. Patients undergoing flow diversion are required to take dual-antiplatelet agents and receive heparin during the procedure, all of which increase the risk of bleeding from the access site.12 Also, flow diverters (FDs) may require large-bore catheter assemblies for delivery and deployment, which may increase the risk of radial artery occlusion, access site bleeding, or vascular injury.13,14To date, only a limited number of case reports and case series have described the safety and feasibility of TRA for the treatment of intracranial aneurysms using flow diverters.15-22Recently, a large, retrospective multicenter study reported the safety of TRA for flow diversion, showing a lower access site (P = .039) and overall complication rate (P = .035).12 This study, however, did not cover catheter systems, patient functional outcome, and aneurysm occlusion. Here, we report our experience with TRA (dRA [anatomic snuffbox] and RA) for the treatment of intracranial aneurysms using all 3 FDA-approved flow diverters, including technical feasibility, procedural safety, patient outcome, and aneurysm occlusion on follow-up. Additionally, we reviewed the current literature on use of flow diverters via TRA. 相似文献
Triazole resistance in Aspergillus spp. is emerging and complicates prophylaxis and treatment of invasive aspergillosis (IA) worldwide. New polymerase chain reaction (PCR) tests on broncho-alveolar lavage (BAL) fluid allow for detection of triazole resistance at a genetic level, which has opened up new possibilities for targeted therapy. In the absence of clinical trials, a modelling study delivers estimates of the added value of resistance detection with PCR, and which empiric therapy would be optimal when local resistance rates are known.
Design
A decision-analytic modelling study was performed based on epidemiological data of IA, extended with estimated dynamics of resistance rates and treatment effectiveness. Six clinical strategies were compared that differ in use of PCR diagnostics (used vs not used) and in empiric therapeutic choice in case of unknown triazole susceptibility: voriconazole, liposomal amphotericin B (LAmB) or both. Outcome measures were proportion of correct treatment, survival and serious adverse events.
Results
Implementing aspergillus PCR tests was projected to result in residual treatment-susceptibility mismatches of <5% for a triazole resistance rate up to 20% (using voriconazole). Empiric LAmB outperformed voriconazole at resistance rates >5–20%, depending on PCR use and estimated survival benefits of voriconazole over LAmB. Combination therapy of voriconazole and LAmB performed best at all resistance rates, but the advantage over the other strategies should be weighed against the expected increased number of drug-related serious adverse events. The advantage of combination therapy over LAmB monotherapy became smaller at higher triazole resistance rates.
Conclusions
Introduction of current aspergillus PCR tests on BAL fluid is an effective way to increase the proportion of patients that receive targeted therapy for IA. The results indicate that close monitoring of background resistance rates and adverse drug events are important to attain the potential benefits of LAmB. The choice of strategy ultimately depends on the probability of triazole resistance, the availability of PCR and individual patient characteristics. 相似文献
AbstractIn light of a growing body of evidence demonstrating pervasive health disparities, medical schools are increasingly incorporating educational programs on social medicine in undergraduate and graduate medical curricula. In 2015, we significantly restructured the cultural competency instruction for medical students at our institution, focusing on achieving greater health equity through caring for vulnerable populations and acknowledging and addressing bias and stereotyping. In order to facilitate educational sustainability while students were immersed in clinical care, a key element of our approach included extending teaching into the clerkship year. The resulting longitudinal thread, Health Equity and Social Justice, empowers future physicians with the knowledge and skills to work towards greater health equity. This article discusses the lessons learned in the implementation of this novel educational program. Our approach can serve as a model for other institutions considering similar instructional reform. 相似文献
BACKGROUND AND PURPOSE:Primary posterior fossa tumors comprise a large group of neoplasias with variable aggressiveness and short and long-term outcomes. This study aimed to validate the clinical usefulness of a radiologic decision flow chart based on previously published neuroradiologic knowledge for the diagnosis of posterior fossa tumors in children.MATERIALS AND METHODS:A retrospective study was conducted (from January 2013 to October 2019) at 2 pediatric referral centers, Children''s Hospital of Philadelphia, United States, and Great Ormond Street Hospital, United Kingdom. Inclusion criteria were younger than 18 years of age and histologically and molecularly confirmed posterior fossa tumors. Subjects with no available preoperative MR imaging and tumors located primarily in the brain stem were excluded. Imaging characteristics of the tumors were evaluated following a predesigned, step-by-step flow chart. Agreement between readers was tested with the Cohen κ, and each diagnosis was analyzed for accuracy.RESULTS:A total of 148 cases were included, with a median age of 3.4 years (interquartile range, 2.1–6.1 years), and a male/female ratio of 1.24. The predesigned flow chart facilitated identification of pilocytic astrocytoma, ependymoma, and medulloblastoma sonic hedgehog tumors with high sensitivity and specificity. On the basis of the results, the flow chart was adjusted so that it would also be able to better discriminate atypical teratoid/rhabdoid tumors and medulloblastoma groups 3 or 4 (sensitivity = 75%–79%; specificity = 92%–99%). Moreover, our adjusted flow chart was useful in ruling out ependymoma, pilocytic astrocytomas, and medulloblastoma sonic hedgehog tumors.CONCLUSIONS:The modified flow chart offers a structured tool to aid in the adjunct diagnosis of pediatric posterior fossa tumors. Our results also establish a useful starting point for prospective clinical studies and for the development of automated algorithms, which may provide precise and adequate diagnostic tools for these tumors in clinical practice.In the past 10 years, there has been an exponential increase in knowledge of the molecular characteristics of pediatric brain tumors, which was only partially incorporated in the 2016 World Health Organization Classification of Tumors of the Central Nervous System.1 The main update in the 2016 Classification was the introduction of the molecular profile of a tumor as an important factor for predicting different biologic behaviors of entities which, on histology, look very similar or even indistinguishable.2 A typical example is the 4 main groups of medulloblastoma: wingless (WNT), sonic hedgehog (SHH) with or without the p53 mutation, group 3, and group 4. Although they may appear similar on microscopy, these categories have distinct molecular profiles, epidemiology, prognosis, and embryologic origin.3Subsequent to the publication of the 2016 World Health Organization Classification, further studies have identified even more molecular subgroups of medulloblastoma with possible prognostic implications4 and also at least 3 new molecular subgroups of atypical teratoid/rhabdoid tumor (AT/RT)5 and several subgroups of ependymoma.6 MR imaging shows promise as a technique for differentiating histologic tumors and their molecular subgroups. This capability relies on not only various imaging characteristics but also the location and spatial extension of the tumor, evident on MR imaging, which can be traced to the embryologic origin of the neoplastic cells.5,7-10One approach to the challenge of identifying imaging characteristics of different tumors in children is to use artificial intelligence. Yet despite this exciting innovation, correctly identifying the location of the mass and its possible use as an element for differential diagnosis still requires the expertise of an experienced radiologist. Previously, D''Arco et al11 proposed a flow chart (Fig 1) for the differential diagnosis of posterior fossa tumors in children based on epidemiologic, imaging signal, and location characteristics of the neoplasm. The aims of the current study were the following: 1) to validate, in a retrospective, large cohort of posterior fossa tumors from 2 separate pediatric tertiary centers, the diagnostic accuracy of that flow chart, which visually represents the neuroadiologist''s mental process in making a diagnosis of posterior fossa tumors in children, 2) to describe particular types of posterior fossa lesions that are not correctly diagnosed by the initial flow chart, and 3) to provide an improved, clinically accessible flow chart based on the results.Open in a separate windowFIG 1.Predesigned radiologic flow chart created according to the literature before diagnostic accuracy analysis. The asterisk indicates brain stem tumors excluded from the analysis. Double asterisks indicate relative to gray matter. Modified with permission from D''Arco et al.11相似文献
BACKGROUND AND PURPOSE:Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions.MATERIALS AND METHODS:We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability.RESULTS:Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = −3.164 for MPRAGE; z = −2.066 for TSE; z = −2.645 for FLAIR; all P < .05).CONCLUSIONS:Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.Head motion is a common cause of image degradation in brain MR imaging. Motion artifacts negatively impact MR image quality and therefore radiologists’ capacity to read the images, ultimately affecting patient clinical care.1 Motion artifacts are more common in noncompliant patients,2 but even in compliant adults, intrascan movement is reported in at least 10% of cases.3 For children who require high-resolution MR images, obtaining optimal image quality can be challenging, owing to the requirement to stay still over long durations needed for acquisition.4 Sedation can be an option, but it carries higher risks, costs, and preparation and recovery time.5In conditions such as intractable focal epilepsy, identification of an epileptogenic lesion is clinically important to guide surgical treatment. However, these lesions can be visually subtle, particularly in children in whom subtle cortical dysplasias are more common.6 Dedicated epilepsy MR imaging protocols use high-resolution 3D sequences to allow better cortical definition and free reformatting of orientation but involve acquisition times in the order of minutes, so data collection becomes more sensitive to motion.7For children in particular, multiple strategies are available for minimizing motion during MR examinations. Collaboration with play specialists using mock scanners and training or projecting a cartoon are good approaches to reduce anxiety.8,9 These tools are not always available in clinical radiology and, even with these strategies, motion can still be an issue.10 Different scanning approaches to correct for intrascan motion have been proposed. Broadly, prospective methods track head motion in real time and modify the acquisition directions accordingly.11 These approaches are applicable to a wide range of sequences but require optical systems with external tracking markers, sometimes uncomfortable or impractical, and extra setup can ultimately result in longer examinations. Furthermore, these approaches may also not be robust to continuous motion.11-13 Retrospective techniques have also been proposed, in some cases relying on imaging navigators that are not compatible with all standard sequences or contrasts.12Here, we use a more general retrospective motion correction technique: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). In this method, k-space samples are reordered to enable retrospective motion correction during image reconstruction.14 Our hypothesis is that DISORDER improves clinical MR imaging quality and readability. To assess its use for clinical sequences, we acquired a dedicated epilepsy MR imaging protocol in 32 children across a wide age range. We used both objective image quality metrics and expert neuroradiologist ratings to evaluate the outcome after motion correction. 相似文献
Background/ObjectiveOccurrence of post-dural puncture headache (PDPH) after diagnostic lumbar puncture (LP) for idiopathic intracranial hypertension (IIH) may seem very unlikely in clinical practice. Nevertheless, it has been suggested by several studies, mainly in sub-group analyses. We aimed to evaluate the prevalence of PDPH in an IIH population and determine any eventual predictive factors of PDPH occurrence.MethodsWe conducted a retrospective multiple-center observational study. All newly diagnosed IIH patients who met the International Classification of Headache Disorders (ICHD-3) or the Dandy modified criteria were included from three different French hospitals. They all underwent LP following the same process with the same type of needle. We recorded PDPH occurring within five days after LP, as defined by ICHD-3 criteria.ResultsSeventy-four IIH patients were recruited, of whom 23 (31%) presented with PDPH. Neither classical risk factors for PDPH such as body mass index, age or gender, nor cerebrospinal fluid opening pressure, or specific IIH features were associated with occurrence of PDPH.ConclusionPDPH can occur after LP in IIH patients. Clinicians should be aware of this possible event during the IIH diagnosis assessment and should not automatically reconsider IIH diagnosis. PDPH prevention using an atraumatic needle and dedicated PDPH treatment seem relevant in IIH patients. 相似文献
To investigate the preoperative use of combination metformin and statin versus monotherapy on biochemical recurrence (BCR) after radical prostatectomy (RP) in diabetic men.
Patients and Methods
Data of 843 diabetic men who underwent RP were stratified on the basis of preoperative use of no drug or of metformin, statin, or both. Multivariable Cox models were used to test the association between treatment and BCR. In a secondary analysis, models were stratified by race and body mass index (BMI) and further adjusted for glycated hemoglobin (HbA1c).
Results
A total of 259 men (31%) received statin therapy, 94 (11%) metformin, 307 (36%) metformin + statin, and 183 (22%) neither. Five-year BCR-free survival rates were 75% in metformin only versus 75% in metformin + statin versus 60% in statin versus 68% in no drug groups (log-rank, P = .003). On multivariable analysis, preoperative statin use was associated with increased BCR risk versus men receiving neither drug (hazard ratio [HR] = 1.84; 95% confidence interval [CI], 1.28-2.64). Metformin alone (HR 0.88; 95% CI, 0.53-1.47) and metformin + statin (HR 0.88; 95% CI, 0.58-1.33) were unrelated to BCR risks. In secondary analysis, the association between statin use and higher BCR risk was similar regardless of race, but was stronger among men with BMI ≥ 30 kg/m2 (HR 3.12; 95% CI, 1.70-5.72). These results were largely unchanged after adjusting for HbA1c.
Conclusion
Among diabetic men undergoing RP, preoperative statin use was associated with worse BCR risk, especially among men with a high BMI, but these associations may be mitigated by concomitant use of metformin. If validated in future findings, research is needed to understand the basis for these associations. 相似文献
To determine frequencies, interlaboratory reproducibility, clinical ratings, and prognostic implications of neural antibodies in a routine laboratory setting in patients with suspected neuropsychiatric autoimmune conditions.
Methods
Earliest available samples from 10,919 patients were tested for a broad panel of neural antibodies. Sera that reacted with leucine-rich glioma-inactivated protein 1 (LGI1), contactin-associated protein-2 (CASPR2), or the voltage-gated potassium channel (VGKC) complex were retested for LGI1 and CASPR2 antibodies by another laboratory. Physicians in charge of patients with positive antibody results retrospectively reported on clinical, treatment, and outcome parameters.
Results
Positive results were obtained for 576 patients (5.3%). Median disease duration was 6 months (interquartile range 0.6–46 months). In most patients, antibodies were detected both in CSF and serum. However, in 16 (28%) patients with N-methyl-d-aspartate receptor (NMDAR) antibodies, this diagnosis could be made only in cerebrospinal fluid (CSF). The two laboratories agreed largely on LGI1 and CASPR2 antibody diagnoses (κ = 0.95). The clinicians (413 responses, 71.7%) rated two-thirds of the antibody-positive patients as autoimmune. Antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), NMDAR (CSF or high serum titer), γ-aminobutyric acid-B receptor (GABABR), and LGI1 had ≥ 90% positive ratings, whereas antibodies against the glycine receptor, VGKC complex, or otherwise unspecified neuropil had ≤ 40% positive ratings. Of the patients with surface antibodies, 64% improved after ≥ 3 months, mostly with ≥ 1 immunotherapy intervention.
Conclusions
This novel approach starting from routine diagnostics in a dedicated laboratory provides reliable and useful results with therapeutic implications. Counseling should consider clinical presentation, demographic features, and antibody titers of the individual patient.