首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4526篇
  免费   357篇
  国内免费   6篇
耳鼻咽喉   50篇
儿科学   79篇
妇产科学   103篇
基础医学   618篇
口腔科学   83篇
临床医学   597篇
内科学   662篇
皮肤病学   55篇
神经病学   377篇
特种医学   162篇
外国民族医学   3篇
外科学   879篇
综合类   33篇
一般理论   5篇
预防医学   348篇
眼科学   37篇
药学   319篇
中国医学   9篇
肿瘤学   470篇
  2023年   20篇
  2022年   63篇
  2021年   161篇
  2020年   83篇
  2019年   128篇
  2018年   145篇
  2017年   130篇
  2016年   105篇
  2015年   155篇
  2014年   231篇
  2013年   267篇
  2012年   395篇
  2011年   452篇
  2010年   265篇
  2009年   208篇
  2008年   337篇
  2007年   313篇
  2006年   293篇
  2005年   234篇
  2004年   208篇
  2003年   155篇
  2002年   146篇
  2001年   39篇
  2000年   27篇
  1999年   27篇
  1998年   27篇
  1997年   13篇
  1996年   7篇
  1995年   8篇
  1994年   13篇
  1993年   10篇
  1992年   18篇
  1991年   25篇
  1990年   17篇
  1989年   16篇
  1988年   16篇
  1987年   10篇
  1986年   8篇
  1985年   11篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1980年   5篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1970年   6篇
  1969年   5篇
  1968年   5篇
  1965年   4篇
排序方式: 共有4889条查询结果,搜索用时 31 毫秒
111.
112.
A new anthrax vaccine under clinical investigation is based on recombinant Bacillus anthracis protective antigen (rPA). Here, we investigated microneedle-based cutaneous and nasal mucosal delivery of rPA in mice and rabbits. In mice, intradermal (id) delivery achieved up to 90% seroconversion after a single dose, compared with 20% after intramuscular (im) injection. Intranasal (inl) delivery of a liquid formulation required 3 doses to achieve responses that were comparable with those achieved via the id or im routes. In rabbits, id delivery provided complete protection against aerosol challenge with anthrax spores; in addition, novel powder formulations administered inl provided complete protection, whereas a liquid formulation provided only partial protection. These results demonstrate, for the first time, that cutaneous or nasal mucosal administration of rPA provides complete protection against inhalational anthrax in rabbits. The novel vaccine/device combinations described here have the potential to improve the efficacy of rPA and other biodefense vaccines.  相似文献   
113.
Skin and soft tissue infections (SSTIs) are a common occurrence in health care facilities with a heightened risk for immunocompromised patients. Klebsiella pneumoniae has been increasingly implicated as the bacterial agent responsible for SSTIs, and treatment can be challenging as more strains become multidrug resistant (MDR). Therefore, new treatments are needed to counter this bacterial pathogen. Gallium complexes exhibit antimicrobial activity and are currently being evaluated as potential treatment for bacterial infections. In this study, we tested a topical formulation containing gallium citrate (GaCi) for the treatment of wounds infected with K. pneumoniae. First, the MIC against K. pneumoniae ranged from 0.125 to 2.0 μg/ml GaCi. After this in vitro efficacy was established, two topical formulations with GaCi (0.1% [wt/vol] and 0.3% [wt/vol]) were tested in a murine wound model of MDR K. pneumoniae infection. Gross pathology and histopathology revealed K. pneumoniae-infected wounds appeared to close faster with GaCi treatment and were accompanied by reduced inflammation compared to those of untreated controls. Similarly, quantitative indications of infection remediation, such as reduced weight loss and wound area, suggested that treatment improved outcomes compared to those of untreated controls. Bacterial burdens were measured 1 and 3 days following inoculation, and a 0.5 to 1.5 log reduction of CFU was observed. Lastly, upon scanning electron microscopy analysis, GaCi treatment appeared to prevent biofilm formation on dressings compared to those of untreated controls. These results suggest that with more preclinical testing, a topical application of GaCi may be a promising alternative treatment strategy for K. pneumoniae SSTI.  相似文献   
114.
115.
Gene amplifications in the 17q chromosomal region are observed frequently in breast cancers. An integrative bioinformatics analysis of this region nominated the MAP3K3 gene as a potential therapeutic target in breast cancer. This gene encodes mitogen‐activated protein kinase kinase kinase 3 (MAP3K3/MEKK3), which has not yet been reported to be associated with cancer‐causing genetic aberrations. We found that MAP3K3 was amplified in approximately 8–20% of breast cancers. Knockdown of MAP3K3 expression significantly inhibited cell proliferation and colony formation in MAP3K3‐amplified breast cancer cell lines MCF‐7 and MDA‐MB‐361 but not in MAP3K3 non‐amplified breast cancer cells. Knockdown of MAP3K3 expression in MAP3K3‐amplified breast cancer cells sensitized breast cancer cells to apoptotic induction by TNFα and TRAIL, as well as doxorubicin, VP‐16 and fluorouracil, three commonly used chemotherapeutic drugs for treating breast cancer. In addition, ectopic expression of MAP3K3, in collaboration with Ras, induced colony formation in both primary mouse embryonic fibroblasts and immortalized human breast epithelial cells (MCF‐10A). Combined, these results suggest that MAP3K3 contributes to breast carcinogenesis and may endow resistance of breast cancer cells to cytotoxic chemotherapy. Therefore, MAP3K3 may be a valuable therapeutic target in patients with MAP3K3‐amplified breast cancers, and blocking MAP3K3 kinase activity with a small molecule inhibitor may sensitize MAP3K3‐amplified breast cancer cells to chemotherapy. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   
116.
With the development and increasing accessibility of new genomic tools such as next-generation sequencing, genome-wide association studies, and genomic stratification models, the debate on genetic discrimination in the context of life insurance became even more complex, requiring a review of current practices and the exploration of new scenarios. In this perspective, a multidisciplinary group of international experts representing different interests revisited the genetics and life insurance debate during a 2-day symposium ‘Life insurance: breast cancer research and genetic risk prediction seminar'' held in Quebec City, Canada on 24 and 25 September 2012. Having reviewed the current legal, social, and ethical issues on the use of genomic information in the context of life insurance, the Expert Group identified four main questions: (1) Have recent developments in genomics and related sciences changed the contours of the genetics and life insurance debate? (2) Are genomic results obtained in a research context relevant for life insurance underwriting? (3) Should predictive risk assessment and risk stratification models based on genomic data also be used for life insurance underwriting? (4) What positive actions could stakeholders in the debate take to alleviate concerns over the use of genomic information by life insurance underwriters? This paper presents a summary of the discussions and the specific action items recommended by the Expert Group.Access to genetic information by life insurers has been a topic of discussion for many years.1 The possibility of using genetic data to underwrite an applicant''s insurance policy has given rise to concerns about the emergence of ‘genetic discrimination''. Genetic discrimination in the field of life insurance is not necessarily illegal in that in insurance underwriting questions about health, family history of disease, or genetic information may constitute legal exceptions to antidiscrimination legislation.2, 3 Nevertheless, the expression ‘genetic discrimination'' has acquired public notoriety4 and we will use more neutral language in this paper.Countries including Canada, the United States, Russia, and Japan5 have chosen not to adopt laws specifically prohibiting access to genetic data for underwriting by life insurers.6 In these countries, life insurance underwriters treat genetic data like other types of medical or lifestyle data. However, a growing number of countries such as Belgium, France, and Norway5 have chosen to adopt laws to prevent or limit insurers'' access to genetic data for life insurance underwriting. Other countries including Finland and the United Kingdom have developed voluntary arrangements with the industry (ie moratoria) with similar objectives.7Life insurance is a private contract between the policy-holder and the insurer. Its principal role is to provide financial security to the beneficiaries in the event of the insured''s death.8 Because of this important role, life insurance is often required, or strongly recommended for those seeking loans to acquire primary social goods, like housing or cars.9 In Europe, a consequence of the advent of the welfare state is that private insurance has increasingly played a complementary and supplementary role to social insurance by offering additional security and protection to the population. Thus, in this region, insurance is often considered as a social good that allows individuals to live a comfortable life and as a tool to promote social integration.10 In other regions of the world, this social role of life insurance is also recognized to a lesser extent. Given this social role, equitable access to life insurance is perceived as a sensitive issue and cases of denial looked upon negatively in popular media. Although documented incidents of denial or of increased premiums on the basis of genetic information have remained limited to the context of a few relatively well known, highly penetrant, familial, adult-onset, genetic conditions,11 they have nevertheless generated significant public concern. Fear that insurers will have access to genetic information generated in a clinical or research setting for use in underwriting has been reported by several studies as a reason for non-participation in genetic research or recommended clinical genetic testing.12, 13, 14The clinical utility of genetic testing for monogenic disorders such as Huntington disease, and hereditary forms of cancer are well established.15 However, genomic risk profiles based on the known common susceptibility variants have limited utility in risk prediction at the individual level, although they could be used for risk stratification in prevention programmes in populations.16 Today, a new era of genomic research has made it increasingly affordable to scan the entire genome of an individual. Researchers and physicians can interpret these data together with medical and lifestyle information in the form of sophisticated risk prediction models.17 Moreover, improvement in computing technologies coupled with the Internet make predictive information increasingly available, whether through direct-to-consumer marketing of genetic tests, genetic data sharing online communities, or international research database projects. Given these important technological and scientific changes, and their impact on various stakeholders. The term ‘stakeholders'' is used in this text to refer to the following groups of individuals: actuaries (person who computes insurance risk and premium rates based on statistical data), academic researchers, community representatives, ethics committees, genetic counsellors, genomic researchers, human rights experts, insurers, governmental representatives, non-governmental organisations, patient representatives, physicians, policy makers, popular media, reinsurers (company in charge of calculating the risk and premium amount for insuring a particular customer), research participants, and underwriters (company or person in charge of calculating the risk involved in providing insurance for a particular customer and to decide how much should be paid for the premium). This list is not meant to be exhaustive as relevant new groups may emerge as this topic further develops in the coming years. A multidisciplinary group of international experts representing different interests (hereinafter ‘the Expert Group'') revisited the genetics and life insurance debate. The following text presents a summary of the issues discussed and the ‘Action Items'' agreed upon by the Expert Group at the ‘Life Insurance, Risk Stratification, and Personalized Medicine Symposium''.  相似文献   
117.
118.
If a solution of DNA-coated nanoparticles is allowed to crystallize, the thermodynamic structure can be predicted by a set of structural design rules analogous to Pauling’s rules for ionic crystallization. The details of the crystallization process, however, have proved more difficult to characterize as they depend on a complex interplay of many factors. Here, we report that this crystallization process is dictated by the individual DNA bonds and that the effect of changing structural or environmental conditions can be understood by considering the effect of these parameters on free oligonucleotides. Specifically, we observed the reorganization of nanoparticle superlattices using time-resolved synchrotron small-angle X-ray scattering in systems with different DNA sequences, salt concentrations, and densities of DNA linkers on the surface of the nanoparticles. The agreement between bulk crystallization and the behavior of free oligonucleotides may bear important consequences for constructing novel classes of crystals and incorporating new interparticle bonds in a rational manner.Materials scientists have accomplished much by studying the way atoms and molecules crystallize. In these systems, however, the identity of the atom and its bonding behavior cannot be independently controlled, limiting our ability to tune material properties at will. In contrast, when a nanoparticle is modified with a dense shell of upright, oriented DNA, it can behave as a programmable atom equivalent (PAE) (1, 2) that can be used to synthesize diverse crystal structures with independent control over composition, scale, and lattice symmetry (314). The thermodynamic product of this crystallization process has been extensively studied by both experimental and theoretical means, and thus a series of design rules has been proposed and validated with a simple geometric model known as the complementary contact model (CCM). These rules allow one to predict the thermodynamically favored structure as the arrangement of particles that maximizes complementary contacts and therefore DNA hybridization (2, 6). These efforts have been very successful in predicting the thermodynamically favored product; recent studies have even demonstrated that PAEs can form single-crystal Wulff polyhedra that are analogous to those formed in atomic systems with the same crystallographic symmetry (15). However, the fact that there is a crystalline thermodynamic product does not mean that any choice of DNA and nanoparticles will result in crystalline systems in practice (3, 4). For example, crystallization has been observed for a relatively narrow class of PAEs (16) and in a manner that is primarily dependent upon the length of the DNA linker and temperature at which assembly occurs (8). Thus, absent from our understanding of these systems is a connection between the crystallization process and the properties of the DNA bonds that form the foundation of these structures.Here, we study the crystallization process and find that the complexity of the polyvalent DNA interactions can be simply understood by considering the behavior of a single DNA bond. By systematically studying the roles of nucleobase sequence, solution ionic strength, DNA density, and temperature on crystallization, we find that the effects of these factors are mirrored by the rates of hybridization and dehybridization of free DNA. In addition to examining steady-state structures, we evaluate the formation and reorganization of these crystals in a time-resolved manner using small-angle X-ray scattering (SAXS) to study how crystallization dynamics are affected by each design variable. Finally, we develop a predictive model that allows one to compare the range of temperatures over which crystallization will occur for different conditions. In addition to providing an avenue for improving PAE crystallization and realizing new architectures, the effectiveness of this reductionist model suggests that this approach can be applied to study crystallization in a broader class of systems, thus making an impact in the materials by design community.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号