Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
ABSTRACTA study was conducted to evaluate mucoadhesive property and immunomodulatory effect of phytogenic gums from Boswellia frereana, Boswellia carteri andCommiphora myrrha on intranasal Peste des petits ruminants (PPR) vaccination in goats and sheep in an ex-vivo and in-vivo situations. Plant gums were purified, dried and compressed into 500gm tablets. Modified shear stress measurement technique was used on freshly excised trachea and intestine tissues of goat to measure peak adhesion time. Forty eight animals (24 goats and 24 sheep) were divided into eight groups (of 3 goats and 3 sheep) and immunized intranasally with gum-vaccine combinations in two ratios (1:1, 1:2). Antibody against PPR virus was measured on day 14, 28, 42 and 56 post vaccination using H-based PPR bELISA. The peak adhesion time of the different gums was transient. PPR virus antibodies were detected in all immunized goats and sheep but not in unvaccinated control. The best percentage inhibition was recorded for Boswellia carteri-vaccine combination group at a ratio of 1:1. Administration of Boswellia carteri-PPR vaccine combination through intranasal or subcutaneous route, elicited similar antibody titre, implying that the intranasal route may be used as a non-invasive alternative delivery in PPR vaccination of small ruminants. 相似文献
Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]nH2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA aminolysis/hydrolysis to produce polyhydroxymethylene urethane (PHMU), enable PHM crosslinking and coupling of PHM with amine‐functional components like gelatin. After hydrolysis/aminolysis the original PVCA shapes are retained. PVCA solution casting yields PVCA and PHM which exhibits uniform and hierarchic pore architectures. Asymmetric membranes, hydrogels, PHM/collagen blends, and electrospun nonwovens of PVCA, PHM, and PHMU are readily tailored for medical applications. 3D printing of PVCA dispersions containing hydroxyapatite affords porous PVCA, PHMU, and PHM scaffolds useful in regenerative medicine. PHM and functionalized PHMs as carbohydrate‐inspired multifunctional materials indicate in vitro biocompatibility and hold great promise for applications in medicine and health care. 相似文献
Fluorescence in situ hybridization (FISH) with the UroVysion probe set (Abbott Molecular, Des Plaines, IL) was used to assess 31 bladder cancers for chromosomal abnormalities, including 4 adenocarcinomas, 5 urachal adenocarcinomas, 6 small cell carcinomas, 7 squamous cell carcinomas, and 9 typical urothelial carcinomas. FISH was also used to assess the benign urothelium in 4 cases. There was a significant increase (P < .001) in the mean number of chromosome 3 (2.64 vs 1.51), chromosome 7 (2.61 vs 1.48), and chromosome 17 (2.41 vs 1.41) centromeric signals observed in cells from patients with cancer compared with patients without cancer. Of the 31 tumors, 29 (94%) demonstrated polysomic signal patterns in more than 10% of cells. In the 2 remaining tumor specimens, there was a high percentage of cells (>75%) demonstrating homozygous 9p21 deletion. The data from this study suggest that chromosomal abnormalities detectable by FISH in urothelial carcinoma are also common in rarer histologic variants of bladder cancer. 相似文献
Transmissible spongiform encephalopathies can be transmitted by blood transfusion. The risk of spreading the disease among the human population could be mitigated with the implementation of a blood screening assay. We developed a two-antibody assay for PrP detection in plasma using the ORIGEN technology with a protocol modification to improve the limit of detection and to increase the sample volume assayed. In the standard 200 microL format, the assay had a detection limit of 7-10 pg of recombinant PrP and 3 pg in 1 mL final volume implementation. PrP concentration measured in normal and scrapie-infected hamster brains was 7.5+/-0.9 and 57.3+/-9.6 microg/g, respectively. After a concentration step with an immuno-affinity resin, plasma PrP(c) was detected by Western blot and its concentration was measured at 3.5+/-0.8 ng/mL. From these data and assuming that blood has the same specific infectivity as brain, we estimated the concentration of abnormal PrP in hamster-infected plasma to be 32 f g/mL. The assay also detected abnormal brain PrP spiked into plasma although the limit of detection was affected. This is a novel and sensitive assay for the detection of PrP in plasma that could be developed into a platform for a plasma-based TSE test. 相似文献
The nonhomologous end-joining (NHEJ) repair pathway is inhibited at telomeres, preventing chromosome fusion. In budding yeast Saccharomyces cerevisiae, the Rap1 protein directly binds the telomere sequences and is required for NHEJ inhibition. Here we show that the Rap1 C-terminal domain establishes two parallel inhibitory pathways through the proteins Rif2 and Sir4. In addition, the central domain of Rap1 inhibits NHEJ independently of Rif2 and Sir4. Thus, Rap1 establishes several independent pathways to prevent telomere fusions. We discuss a possible mechanism that would explain Rif2 multifunctionality at telomeres and the recent evolutionary origin of Rif2 from an origin recognition complex (ORC) subunit. 相似文献
The sinonasal microbiome remains poorly defined, with our current knowledge based on a few cohort studies whose findings are inconsistent. Furthermore, the variability of the sinus microbiome across geographical divides remains unexplored. We characterize the sinonasal microbiome and its geographical variations in both health and disease using 16S rRNA gene sequencing of 410 individuals from across the world. Although the sinus microbial ecology is highly variable between individuals, we identify a core microbiome comprised of Corynebacterium, Staphylococcus, Streptococcus, Haemophilus and Moraxella species in both healthy and chronic rhinosinusitis (CRS) cohorts. Corynebacterium (mean relative abundance = 44.02%) and Staphylococcus (mean relative abundance = 27.34%) appear particularly dominant in the majority of patients sampled. Amongst patients suffering from CRS with nasal polyps, a statistically significant reduction in relative abundance of Corynebacterium (40.29% vs 50.43%; P = .02) was identified. Despite some measured differences in microbiome composition and diversity between some of the participating centres in our cohort, these differences would not alter the general pattern of core organisms described. Nevertheless, atypical or unusual organisms reported in short-read amplicon sequencing studies and that are not part of the core microbiome should be interpreted with caution. The delineation of the sinonasal microbiome and standardized methodology described within our study will enable further characterization and translational application of the sinus microbiota. 相似文献
Lung carcinoids occur sporadically and rarely in association with multiple
endocrine neoplasia type 1 (MEN1). There are no well defined genetic
abnormalities known to occur in these tumors. We studied 11 sporadic lung
carcinoids for loss of heterozygosity (LOH) at the locus of the MEN1 gene
on chromosome 11q13, and for mutations of the MEN1 gene using dideoxy
fingerprinting. Additionally, a lung carcinoid from a MEN1 patient was
studied. In four of 11 (36%) sporadic tumors, both copies of the MEN1 gene
were inactivated. All four tumors showed the presence of a MEN1 gene
mutation and loss of the other allele. Observed mutations included a 1 bp
insertion, a 1 bp deletion, a 13 bp deletion and a single nucleotide
substitution affecting a donor splice site. Each mutation predicts
truncation or potentially complete loss of menin. The remaining seven
tumors showed neither the presence of a MEN1 gene mutation nor 11q13 LOH.
The tumor from the MEN1 patient showed LOH at chromosome 11q13 and a
complex germline MEN1 gene mutation. The data implicate the MEN1 gene in
the pathogenesis of sporadic lung carcinoids, representing the first
defined genetic alteration in these tumors.
相似文献
Our understanding of picornavirus RNA replication has improved over the past 10 years, due in large part to the discovery of cis-active RNA elements (CREs) within picornavirus RNA genomes. CREs function as templates for the conversion of VPg, the Viral Protein of the genome, into VPgpUpU(OH). These so called CREs are different from the previously recognized cis-active RNA sequences and structures within the 5' and 3' NTRs of picornavirus genomes. Two adenosine residues in the loop of the CRE RNA structures allow the viral RNA-dependent RNA polymerase 3D(Pol) to add two uridine residues to the tyrosine residue of VPg. Because VPg and/or VPgpUpU(OH) prime the initiation of viral RNA replication, the asymmetric replication of viral RNA could not be explained without an understanding of the viral RNA template involved in the conversion of VPg into VPgpUpU(OH) primers. We review the growing body of knowledge regarding picornavirus CREs and discuss how CRE RNAs work coordinately with viral replication proteins and other cis-active RNAs in the 5' and 3' NTRs during RNA replication. 相似文献