首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2704篇
  免费   171篇
  国内免费   7篇
耳鼻咽喉   21篇
儿科学   95篇
妇产科学   102篇
基础医学   317篇
口腔科学   51篇
临床医学   325篇
内科学   586篇
皮肤病学   35篇
神经病学   247篇
特种医学   100篇
外科学   252篇
综合类   22篇
一般理论   1篇
预防医学   241篇
眼科学   35篇
药学   205篇
中国医学   10篇
肿瘤学   237篇
  2024年   7篇
  2023年   61篇
  2022年   82篇
  2021年   144篇
  2020年   81篇
  2019年   106篇
  2018年   106篇
  2017年   76篇
  2016年   87篇
  2015年   91篇
  2014年   133篇
  2013年   144篇
  2012年   201篇
  2011年   234篇
  2010年   139篇
  2009年   104篇
  2008年   165篇
  2007年   164篇
  2006年   156篇
  2005年   119篇
  2004年   98篇
  2003年   105篇
  2002年   84篇
  2001年   26篇
  2000年   12篇
  1999年   11篇
  1998年   13篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1985年   5篇
  1979年   4篇
  1978年   4篇
  1970年   7篇
  1969年   2篇
  1968年   4篇
  1967年   2篇
  1966年   3篇
  1965年   2篇
  1943年   2篇
  1935年   3篇
  1934年   3篇
  1933年   4篇
排序方式: 共有2882条查询结果,搜索用时 0 毫秒
21.
PURPOSE: Optical coherence tomography (OCT) imaging was evaluated to determine if radiation-induced mucosal damage could be noninvasively monitored in real time and correlated with histopathologic findings. EXPERIMENTAL DESIGN: Female C3H mice, ages 7 to 9 weeks, four per group, were immobilized in a custom-made Lucite jig and received 0, 15, 22.5, and 25 Gy in a single fraction to their oral cavity. OCT images were acquired of proximal, middle, and distal aspects of the dorsum of the tongue on days 0, 1, 3, 5, and 7 post-irradiation. Animals were sacrificed on day 7 and samples taken for histologic evaluation. OCT images were visually examined and also quantified by image analysis and compared with histologic findings. RESULTS: Tongues removed 7 days post-irradiation showed no visible damage; however, upon staining with toluidine blue, ulcers at the base of the tongue became visible (100% for 25 Gy, 75% after 22.5 Gy, and 0% after 15 Gy). Visual inspection of OCT images qualitatively compared with histologic findings and quantitative image analysis of the OCT images (effective light penetration depth) revealed significant changes 7 days post-irradiation compared with unirradiated controls for the base of the tongue. CONCLUSIONS: OCT allows for direct noninvasive real-time acquisition of digitally archivable images of oral mucosa and can detect radiation-induced changes in the mucosa before visual manifestation. OCT may be a useful technique to quantify subclinical radiation-induced mucosal injury in experimental chemoradiation clinical trials.  相似文献   
22.
BackgroundIn response to the COVID-19 pandemic, countries are introducing digital passports that allow citizens to return to normal activities if they were previously infected with (immunity passport) or vaccinated against (vaccination passport) SARS-CoV-2. To be effective, policy decision-makers must know whether these passports will be widely accepted by the public and under what conditions. This study focuses attention on immunity passports, as these may prove useful in countries both with and without an existing COVID-19 vaccination program; however, our general findings also extend to vaccination passports.ObjectiveWe aimed to assess attitudes toward the introduction of immunity passports in six countries, and determine what social, personal, and contextual factors predicted their support.MethodsWe collected 13,678 participants through online representative sampling across six countries—Australia, Japan, Taiwan, Germany, Spain, and the United Kingdom—during April to May of the 2020 COVID-19 pandemic, and assessed attitudes and support for the introduction of immunity passports.ResultsImmunity passport support was moderate to low, being the highest in Germany (775/1507 participants, 51.43%) and the United Kingdom (759/1484, 51.15%); followed by Taiwan (2841/5989, 47.44%), Australia (963/2086, 46.16%), and Spain (693/1491, 46.48%); and was the lowest in Japan (241/1081, 22.94%). Bayesian generalized linear mixed effects modeling was used to assess predictive factors for immunity passport support across countries. International results showed neoliberal worldviews (odds ratio [OR] 1.17, 95% CI 1.13-1.22), personal concern (OR 1.07, 95% CI 1.00-1.16), perceived virus severity (OR 1.07, 95% CI 1.01-1.14), the fairness of immunity passports (OR 2.51, 95% CI 2.36-2.66), liking immunity passports (OR 2.77, 95% CI 2.61-2.94), and a willingness to become infected to gain an immunity passport (OR 1.6, 95% CI 1.51-1.68) were all predictive factors of immunity passport support. By contrast, gender (woman; OR 0.9, 95% CI 0.82-0.98), immunity passport concern (OR 0.61, 95% CI 0.57-0.65), and risk of harm to society (OR 0.71, 95% CI 0.67-0.76) predicted a decrease in support for immunity passports. Minor differences in predictive factors were found between countries and results were modeled separately to provide national accounts of these data.ConclusionsOur research suggests that support for immunity passports is predicted by the personal benefits and societal risks they confer. These findings generalized across six countries and may also prove informative for the introduction of vaccination passports, helping policymakers to introduce effective COVID-19 passport policies in these six countries and around the world.  相似文献   
23.
The use of amorphous microspheres as filler in composites is promising due to their light weight, low cost, incombustibility, and the ability to alter relevant properties of the final composite. Contrary to glass spheres, perlite microspheres are much cheaper and can be tailor-made to facilitate purpose-oriented alteration of the final composite. We report the use of perlite microspheres for the preparation of: (1) composites, through a compression molding (hot pressing) technique; and (2) composite filaments, in a single screw extruder, as well as their use for sample printing through Fused Deposition Modeling (FDM). Proper characterization of the produced composites allows for their evaluation in terms of physical, thermal, and mechanical properties and with regards to the manufacturing technique, the filler fraction, and size. Composite samples of acceptable quality in terms of filler survival and dispersion as well as mechanical properties were produced through compression molding using fine expanded perlite microspheres (<90 μm) up to an infill ratio of 40 vol.%. Fine fillers (<90 μm) performed well in FDM, allowing printing of composite dogbone samples with a higher Young’s modulus and elongation and similar ultimate tensile strength compared to benchmark, up to an infill ratio of 20 vol.%. Composite samples present a slightly lower burning rate compared to those produced solely by ABS. Perlite microspheres present good workability in both applications, possessing satisfactory performance as filler in the composites, and can thus be assumed a promising multifunctional filler for various thermoplastics considering their low price, environmental impact, and fire rating.  相似文献   
24.
A micellar electrokinetic chromatography (MEKC) method has been developed and validated for the determination of nimesulide related compounds in pharmaceutical formulations. Electrophoretic separation of six European Pharmacopoeia (EP) impurities (A–F) was performed using a fused silica capillary (Leff. = 50 cm, Ltot. = 57 cm, 50 μm i.d.) with a background electrolyte (BGE) containing 25 mM borate buffer (pH 9.5), 30 mM sodium dodecyl sulphate and φ = 3% (v/v) acetonitrile. The influence of several factors (surfactant and buffer concentration, pH, organic modifier, applied voltage, capillary temperature and injection time) was studied. The method was suitably validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. The calibration curves obtained for the six compounds were linear over the range 5–12 μg ml−1 (0.05–0.12%). The relative standard deviations (sr) of intra- and inter-day experiments were less than 5.0%. The detection limits ranged between 0.7 and 1.6 μg ml−1 depending on the impurity. The proposed method was applied successfully to the quantification of nimesulide impurities in its pharmaceutical formulation.  相似文献   
25.
Today, Ni-Cr steel is used for advanced applications in the high-temperature and electrical industries, medical equipment, food industry, agriculture and is applied in food and beverage packaging and kitchenware, automotive or mesh. A study of input steel powder from various stages of the recycling process intended for 3D printing was conducted. In addition to the precise evaluation of the morphology, particle size and composition of the powders used for laser 3D printing, special testing and evaluation of the heat-treated powders were carried out. Heat treatment up to 950 °C in an air atmosphere revealed the properties of powders that can appear during laser sintering. The powders in the oxidizing atmosphere change the phase composition and the original FeNiCr stainless steel changes to a two-phase system of Fe3Ni and Cr2O3, as evaluated by X-ray diffraction analysis. Observation of the morphology showed the separation of the oxidic phase in the sense of a brittle shell. The inner part of the powder particle is a porous compact core. The particle size is generally reduced due to the peeling of the oxide shell. This effect can be critical to 3D printing processing, causing defects on the printed parts, as well as reducing the usability of the precursor powder and can also change the properties of the printed part.  相似文献   
26.
OBJECTIVE: To examine whether maternal serum ADAM12s, a potential first- and second-trimester marker of fetal aneuploidy and fetal growth, had altered concentrations in the first or second trimester of pregnancies subsequently developing pre-eclampsia. METHODS: ADAM12s was measured by a time-resolved fluoroimmunoassay developed by PerkinElmer Life Science. Maternal serum samples from women taking part in early first-trimester aneuploidy screening in whom the pregnancy resulted in pre-eclampsia (64) were identified from a cohort of 4,390 singleton pregnancies in which uterine artery Doppler mean Pulsatility Index (PI) had been measured at 22-24 weeks. From amongst those cases delivering a normal term infant with birth weight greater than the 10th centile for gestational age 240 cases were selected as gestational age-matched controls. A second study group consisting of maternal serum taken at 22-24 weeks at the time of uterine artery Doppler in a group of 12 women developing pre-eclampsia were compared with 86 matched controls from a previously studied cohort of 24 cases and 144 controls. Serum ADAM12s concentrations were converted to multiple of the median (MoM) to take account of gestational age variation. RESULTS: First-trimester maternal serum ADAM12s levels in women who developed pre-eclampsia were reduced with a median MoM of 0.71 which was further reduced in those delivering prior to 35 weeks (0.50). At the 5th centile of normal (0.48 MoM) ADAM12s identified 27% of cases with pre-eclampsia and 47% of those with early pre-eclampsia. Combining ADAM12s with PAPP-A from a previous study only resulted in a further 1% increase in detection of all women developing pre-eclampsia. However combining ADAM12s with mean PI increased the detection rate to 66%. In the second trimester at 22-24 weeks the maternal serum ADAM12s levels were increased in those women developing pre-eclampsia compared to controls (709 vs 486 ug/L, p = 0.045). CONCLUSION: ADAM12s in addition to being a potential marker of aneuploidy may also be a marker of pre-eclampsia. Further studies are required to see if this can improve on the clinical discrimination already provided by PAPP-A in the early first trimester.  相似文献   
27.
The ferromagnetic resonance (FMR) in the frequency range of 0.5 to 12.5 GHz has been investigated as a function of external magnetic field for rapidly quenched Fe3Co67Cr3Si15B12 amorphous ribbons with different features of the effective magnetic anisotropy. Three states of the ribbons were considered: as-quenched without any treatment; after relaxation annealing without stress at the temperature of 350 °C during 1 h; and after annealing under specific stress of 230 MPa at the temperature of 350 °C during 1 h. For FMR measurements, we adapted a technique previously proposed and tested for the case of microwires. Here, amorphous ribbons were studied using the sample holder based on a commercial SMA connector. On the basis of the measurements of the reflection coefficient S11, the total impedance including its real and imaginary components was determined to be in the frequency range of 0.5 to 12.5 GHz. In order to confirm the validity of the proposed technique, FMR was also measured by the certified cavity perturbation technique using a commercial Bruker spectrometer operating at X-band frequency of 9.39 GHz. As part of the characterization of the ribbons used for microwave measurements, comparative analysis was performed of X-ray diffraction, optical microscopy, transmission electron microscopy, inductive magnetic hysteresis loops, vibrating sample magnetometry, magneto-optical Kerr effect (including magnetic domains) and magnetoimpedance data for of all samples.  相似文献   
28.
Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses are enveloped, positive-sense, and single-stranded RNA viruses, many of which are zoonotic pathogens that crossed over into humans. Seven coronavirus species, including SARS-CoV-2, have been discovered that, depending on the virus and host physiological condition, may cause mild or lethal respiratory disease. There is considerable variation in disease prevalence and severity across populations and communities. Importantly, minority populations in the United States appear to have been disproportionally affected by COVID-19 (1, 2). For example, in Chicago, more than 50% of COVID-19 cases and nearly 70% of COVID-19 deaths are in African Americans (who make up 30% of the population of Chicago) (1). While social and economic factors are largely responsible for driving COVID-19 health disparities, investigating genetic diversity at host genes related to SARS-CoV-2 infection could help identify functionally important variation, which may play a role in individual risk for severe COVID-19 infection.In this study, we focused on four key genes playing a role in SARS-CoV-2 infection (3). The ACE2 gene, encoding the angiotensin-converting enzyme-2 protein, was reported to be a main binding site for severe acute respiratory syndrome coronavirus (SARS-CoV) during an outbreak in 2003, and evidence showed stronger binding affinity to SARS-CoV-2, which enters the target cells via ACE2 receptors (3, 4). The ACE2 gene is located on the X chromosome (chrX); its expression level varies among populations (5); and it is ubiquitously expressed in the lung, blood vessels, gut, kidney, testis, and brain, all organs that appear to be affected as part of the COVID-19 clinical spectrum (6). SARS-CoV-2 infects cells through a membrane fusion mechanism, which in the case of SARS-CoV, is known to induce down-regulation of ACE2 (7). Such down-regulation has been shown to cause inefficient counteraction of angiotensin II effects, leading to enhanced pulmonary inflammation and intravascular coagulation (7). Additionally, altered expression of ACE2 has been associated with cardiovascular and cerebrovascular disease, which is highly relevant to COVID-19 as several cardiovascular conditions are associated with severe disease. TMPRSS2, located on the outer membrane of host target cells, binds to and cleaves ACE2, resulting in activation of spike proteins on the viral envelope and facilitating membrane fusion and endocytosis (8). Two additional genes, DPP4 and LY6E, have been shown to play an important role in the entry of SARS-CoV-2 virus into host cells. DPP4 is a known functional receptor for the Middle East respiratory syndrome coronavirus (MERS-CoV), causing a severe respiratory illness with high mortality (9, 10). LY6E encodes a glycosylphosphatidylinositol-anchored cell surface protein, which is a critical antiviral immune effector that controls coronavirus infection and pathogenesis (11). Mice lacking LY6E in hematopoietic cells were susceptible to murine coronavirus infection (11).Previous studies of genetic diversity at ACE2 and TMPRSS2 in global human populations did not include an extensive set of African populations (5, 1214). No common coding variants (defined here as minor allele frequency [MAF] > 0.05) at ACE2 were identified in any prior population studies. However, few studies included diverse indigenous African populations whose genomes harbor the greatest diversity among humans. This leads to a substantial disparity in the representation of African ancestries in human genetic studies of COVID-19, impeding health equity as the transferability of findings based on non-African ancestries to African populations can be low (15). Including more African populations in studying the genetic diversity of genes involved in SARS-CoV-2 infection is extremely necessary. Additionally, the evolutionary forces underlying global patterns of genetic diversity at host genes related to SARS-CoV-2 infection are not well understood. Using methods to detect natural selection signatures at host genes related to viral infections helps identify putatively functional variants that could play a role in disease risk.We characterized genetic variation and studied natural selection signatures at ACE2, TMPRSS2, DPP4, and LY6E in ethnically diverse human populations by analyzing 2,012 genomes from ethnically diverse Africans (referred to as the “African diversity” dataset), 2,504 genomes from the 1000 Genomes Project (1KG), and whole-exome sequencing of 15,977 individuals of European ancestry (EA) and African ancestry from the Penn Medicine BioBank (PMBB) dataset (SI Appendix, Fig. S1). The African diversity dataset includes populations with diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists) and speaking languages belonging to the four major language families in Africa (Khoesan; Niger–Congo, of which Bantu is the largest subfamily; Afroasiatic; and Nilo-Saharan). We identify functionally relevant variation, compare the patterns of variation across global populations, and provide insight into the evolutionary forces underlying these patterns of genetic variation. In addition, we perform an association study using the variants identified from whole-exome sequencing at the four genes and clinical traits derived from electronic health record (EHR) data linked to the subjects enrolled in the PMBB. The EHR data include diseases related to organ dysfunctions associated with severe COVID-19, such as respiratory, cardiovascular, liver, and renal complications. Our study of genetic variation in genes involved in SARS-CoV-2 infection provides data to investigate infection susceptibility within and between populations and indicates that variants in these genes may play a role in comorbidities relevant to COVID-19 severity.  相似文献   
29.
30.
BackgroundForce‐time integral (FTI) is an ablation marker of lesion quality and transmurality. A target FTI of 400 gram‐seconds (gs) has been shown to improve durability of pulmonary vein isolation, following atrial fibrillation ablation. However, relevant targets for cavotricuspid isthmus (CTI) ablation are lacking.HypothesisWe sought to investigate whether CTI ablation with 600 gs FTI lesions is associated with reduced rate of transisthmus conduction recovery compared to 400 gs lesions.MethodsFifty patients with CTI‐dependent flutter were randomized to ablation using 400 gs (FTI400 group, n = 26) or 600 gs FTI lesions (FTI600 group, n = 24). The study endpoint was spontaneous or adenosine‐mediated recovery of transisthmus conduction, after a 20‐min waiting period.ResultsThe study endpoint occurred in five patients (19.2%) in group FTI400 and in four patients (16.7%) in group FTI600, p = .81. First‐pass CTI block was similar in both groups (50% in FTI400 vs. 54.2% in FTI600, p = .77). There were no differences in the total number of lesions, total ablation time, procedure time and fluoroscopy duration between the two groups. There were no major complications in any group. In the total population, patients not achieving first‐pass CTI block had significantly higher rate of acute CTI conduction recovery, compared to those with first‐pass block (29.2% vs. 7.7% respectively, p = .048).ConclusionsCTI ablation using 600 gs FTI lesions is not associated with reduced spontaneous or adenosine‐mediated recurrence of transisthmus conduction, compared to 400 gs lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号