首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1777篇
  免费   150篇
  国内免费   4篇
耳鼻咽喉   9篇
儿科学   41篇
妇产科学   25篇
基础医学   377篇
口腔科学   12篇
临床医学   198篇
内科学   397篇
皮肤病学   36篇
神经病学   176篇
特种医学   27篇
外科学   176篇
综合类   5篇
预防医学   113篇
眼科学   23篇
药学   115篇
中国医学   1篇
肿瘤学   200篇
  2024年   1篇
  2023年   15篇
  2022年   8篇
  2021年   25篇
  2020年   29篇
  2019年   20篇
  2018年   65篇
  2017年   34篇
  2016年   43篇
  2015年   48篇
  2014年   46篇
  2013年   72篇
  2012年   164篇
  2011年   177篇
  2010年   84篇
  2009年   60篇
  2008年   165篇
  2007年   167篇
  2006年   134篇
  2005年   136篇
  2004年   132篇
  2003年   117篇
  2002年   121篇
  2001年   4篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1967年   2篇
  1931年   1篇
排序方式: 共有1931条查询结果,搜索用时 15 毫秒
21.
22.
Gene expression plays a central role in the orchestration of cellular processes. The use of inducible promoters to change the expression level of a gene from its physiological level has significantly contributed to the understanding of the functioning of regulatory networks. However, from a quantitative point of view, their use is limited to short-term, population-scale studies to average out cell-to-cell variability and gene expression noise and limit the nonpredictable effects of internal feedback loops that may antagonize the inducer action. Here, we show that, by implementing an external feedback loop, one can tightly control the expression of a gene over many cell generations with quantitative accuracy. To reach this goal, we developed a platform for real-time, closed-loop control of gene expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics to manipulate the cells' environment, and original software for automated imaging, quantification, and model predictive control. By using an endogenous osmostress responsive promoter and playing with the osmolarity of the cells environment, we show that long-term control can, indeed, be achieved for both time-constant and time-varying target profiles at the population and even the single-cell levels. Importantly, we provide evidence that real-time control can dynamically limit the effects of gene expression stochasticity. We anticipate that our method will be useful to quantitatively probe the dynamic properties of cellular processes and drive complex, synthetically engineered networks.  相似文献   
23.

Aims  

To evaluate the utility of laser microdissection in the comparison of phenotypes and genetic alterations between colon cancer and corresponding liver metastasis in the context of intratumoral heterogeneity.  相似文献   
24.
25.
In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.  相似文献   
26.
27.
Administration of low-dose interleukin-2 (IL-2) alone or combined with rapamycin (RAPA) prevents hyperglycemia in NOD mice. Also, low-dose IL-2 cures recent-onset type 1 diabetes (T1D) in NOD mice, partially by boosting pancreatic regulatory T cells (Treg cells). These approaches are currently being evaluated in humans. Our objective was to study the effect of higher IL-2 doses (250,000–500,000 IU daily) as well as low-dose IL-2 (25,000 IU daily) and RAPA (1 mg/kg daily) (RAPA/IL-2) combination. We show that, despite further boosting of Treg cells, high doses of IL-2 rapidly precipitated T1D in prediabetic female and male mice and increased myeloid cells in the pancreas. Also, we observed that RAPA counteracted IL-2 effects on Treg cells, failed to control IL-2–boosted NK cells, and broke IL-2–induced tolerance in a reversible way. Notably, the RAPA/IL-2 combination failure to cure T1D was associated with an unexpected deleterious effect on glucose homeostasis at multiple levels, including β-cell division, glucose tolerance, and liver glucose metabolism. Our data help to understand the therapeutic limitations of IL-2 alone or RAPA/IL-2 combination and could lead to the design of improved therapies for T1D.In type 1 diabetes (T1D), the immune system destroys the pancreatic β-cells (1). At clinical onset, ∼30% of β-cells are still able to produce insulin (2), thus stopping autoimmune destruction, which at this stage is a promising approach (3). Along the same lines, there is a growing list of phase I/II clinical trials based on immunomodulation that are currently being conducted in T1D patients (4).NOD mice, which develop spontaneous T1D, represent an accepted model for testing new therapies (5), the gold standard being that treatments that cure overt hyperglycemia in these mice may be most appropriate for translation into the clinic, as was the case for anti-CD3 antibodies (Abs) (6), which have been tested in patients with promising results (7). In addition, results from our own group showing that low-dose interleukin-2 (IL-2) can prevent (8) and revert disease in NOD mice (9) have led to the translation of this strategy into clinical trials in T1D patients (clinical trial reg. no. NCT01353833, clinicaltrials.gov).We have shown that in NOD mice, administration of low-dose IL-2 for 5 days induced the remission of new-onset T1D by specifically boosting regulatory T cells (Treg cells) in the pancreas without activating pathogenic effector T cells (Teff cells). However, remission was obtained in only 60% of treated mice, and half of them became diabetic again during the following months (9). Consequently, improving IL-2 therapy by optimizing dosing or combining IL-2 with other immunomodulatory drugs, such as rapamycin (RAPA), could be of great importance for the goal of translating this therapy to humans.RAPA has been used in clinical transplantation for many years (10), and it has been safely administered to T1D patients during islet transplantation (11,12). In mice, RAPA monotherapy can prevent T1D development (13); however, it is unable to induce disease reversal (14). Moreover, RAPA and IL-2 were found to be synergistic for the prevention of diabetes in NOD mice (13). Consequently, we decided to test whether RAPA could synergize with short-term IL-2 therapy to reverse T1D and reinforce the development of long-term tolerance.In this work, we have further studied the mechanisms of action of IL-2 and RAPA alone or in combination in the NOD model of T1D.  相似文献   
28.
29.
To determine the effect of maternal anaemia on pregnancy outcome and describe its impact on infant haemoglobin level in the first 18 months of life, we conducted a prospective study of 617 pregnant women and their children in Benin. Prevalence of maternal anaemia at delivery was 39.5%, and 61.1% of newborns were anaemic at birth. Maternal anaemia was not associated with low birth weight [OR = 1.2 (0.6-2.2)] or preterm birth [OR = 1.3 (0.7-2.4)], whereas the newborn's anaemia was related to maternal anaemia [OR = 1.8 (1.2-2.5)]. There was no association between an infant's haemoglobin level until 18 months and maternal anaemia. However, malaria attacks during follow-up, male gender and sickle cell trait were all associated with a lower infant haemoglobin level until 18 months, whereas good infant feeding practices and a polygamous family were positively associated with a higher haemoglobin level during the first 18 months of life.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号