Chloride channel 3 (CIC-3) has been suggested to be implicated in the carcinogenesis though; it still remains ill understood in hepatocarcinoma, especially in terms of clinicopathological meaning of its expression. Given this, herein, to understand the clinicopathological significance of CIC-3 expression in hepatocarcinoma, Immunohistochemistry was performed to examine the level of CIC-3, followed by statistical analysis of the correlation between expression versus clinicopathological variables, including gender, age, TNM classifications, tumor size, lymph node metastasis and overall prognosis. It was shown that positive staining of CIC-3 can be present in both hepatocarcinoma and its paired normal controls; and that CIC-3 was significantly over-expressed in hepatcarcioma on the whole relative to paired normal controls. Moreover, up-regulation of CIC-3 markedly correlated with tumor size and overall prognosis, suggesting that CIC-3 expression could predict both tumor size and overall prognosis in hepatocarcinoma. 相似文献
Inflammation Research - Efficient production of monocytic myeloid-derived suppressor cells (M-MDSCs) with stable immunosuppressive function is crucial for immunomodulatory cell therapy for many... 相似文献
Inflammation Research - The present study was undertaken to validate whether TNF-α and calreticulin (CRT) serve as dual signaling to activate nucleotide-binding oligomerization domain-,... 相似文献
Introduction: Although used as an anesthetic drug for decades, ketamine appears to have garnered renewed interest due to its potential therapeutic uses in pain therapy, neurology, and psychiatry. Ketamine undergoes extensive oxidative metabolism by cytochrome P450 (CYP) enzymes. Considerable efforts have been expended to elucidate the ketamine-induced regulation of CYP gene expression. The safety profile of chronic ketamine administration is still unclear. Understanding how ketamine regulates CYP gene expression is clinically meaningful.
Areas covered: In this article, the authors provide a brief review of clinical applications of ketamine and its metabolism by CYP enzymes. We discuss the effects of ketamine on the regulation of CYP gene expression, exploring aspects of cytoskeletal remodeling, mitochondrial functions, and calcium homeostasis.
Expert opinion: Ketamine may inhibit CYP gene expression through inhibiting calcium signaling, decreasing ATP levels, producing excessive reactive oxygen species, and subsequently perturbing cytoskeletal dynamics. Further research is still needed to avoid possible ketamine–drug interactions during long-term use in the clinic. 相似文献