首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35460篇
  免费   3264篇
  国内免费   2524篇
耳鼻咽喉   395篇
儿科学   402篇
妇产科学   368篇
基础医学   4165篇
口腔科学   594篇
临床医学   4928篇
内科学   5111篇
皮肤病学   379篇
神经病学   2050篇
特种医学   1288篇
外国民族医学   24篇
外科学   3306篇
综合类   6590篇
现状与发展   11篇
预防医学   2157篇
眼科学   1122篇
药学   3536篇
  36篇
中国医学   1930篇
肿瘤学   2856篇
  2025年   11篇
  2024年   550篇
  2023年   874篇
  2022年   1655篇
  2021年   1873篇
  2020年   1504篇
  2019年   1235篇
  2018年   1264篇
  2017年   1225篇
  2016年   1059篇
  2015年   1591篇
  2014年   1960篇
  2013年   1691篇
  2012年   2644篇
  2011年   2737篇
  2010年   1633篇
  2009年   1318篇
  2008年   1578篇
  2007年   1678篇
  2006年   1680篇
  2005年   1706篇
  2004年   1064篇
  2003年   1015篇
  2002年   888篇
  2001年   788篇
  2000年   808篇
  1999年   937篇
  1998年   612篇
  1997年   679篇
  1996年   500篇
  1995年   419篇
  1994年   356篇
  1993年   207篇
  1992年   271篇
  1991年   241篇
  1990年   207篇
  1989年   180篇
  1988年   168篇
  1987年   135篇
  1986年   101篇
  1985年   77篇
  1984年   34篇
  1983年   20篇
  1982年   27篇
  1981年   15篇
  1980年   9篇
  1979年   9篇
  1965年   2篇
  1940年   3篇
  1935年   2篇
排序方式: 共有10000条查询结果,搜索用时 39 毫秒
41.
The neonatal Fc receptor (FcRn) is a major regulator of IgG and albumin homeostasis systemically and in the kidneys. We investigated the role of FcRn in the development of immune complex–mediated glomerular disease in mice. C57Bl/6 mice immunized with the noncollagenous domain of the α3 chain of type IV collagen (α3NC1) developed albuminuria associated with granular capillary loop deposition of exogenous antigen, mouse IgG, C3 and C5b-9, and podocyte injury. High-resolution imaging showed abundant IgG deposition in the expanded glomerular basement membrane, especially in regions corresponding to subepithelial electron dense deposits. FcRn-null and -humanized mice immunized with α3NC1 developed no albuminuria and had lower levels of serum IgG anti-α3NC1 antibodies and reduced glomerular deposition of IgG, antigen, and complement. Our results show that FcRn promotes the formation of subepithelial immune complexes and subsequent glomerular pathology leading to proteinuria, potentially by maintaining higher serum levels of pathogenic IgG antibodies. Therefore, reducing pathogenic IgG levels by pharmacologic inhibition of FcRn may provide a novel approach for the treatment of immune complex–mediated glomerular diseases. As proof of concept, we showed that a peptide inhibiting the interaction between human FcRn and human IgG accelerated the degradation of human IgG anti-α3NC1 autoantibodies injected into FCRN-humanized mice as effectively as genetic ablation of FcRn, thus preventing the glomerular deposition of immune complexes containing human IgG.The MHC class I–like neonatal Fc receptor (FcRn), a heterodimer comprising a heavy chain and β2-microglobulin light chain, is the major regulator of IgG and albumin homeostasis.1 Perinatally, FcRn mediates the transfer of IgG from mother to offspring, across the placenta in primates and trans-intestinally in suckling rodents. Throughout life, FcRn protects IgG and albumin from catabolism, explaining the unusually long t1/2 and high serum levels of these proteins. IgG and albumin taken up by cells by pinocytosis bind strongly to FcRn at pH 6.0–6.5 in endosomes. FcRn-bound ligands are then recycled to the plasma membrane, where they dissociate at pH 7.4, whereas IgG and albumin not bound to FcRn are targeted to lysosomes for degradation. FcRn is thought to promote some autoimmune diseases because it protects pathogenic IgG from degradation. For instance, Fcrn−/− mice are resistant to passive transfer of arthritis by K/BxN sera and autoimmune skin pathology induced by antibodies targeting autoantigens at the dermal–epidermal junction, although this protection can be overcome by excess autoantibodies.24In kidneys, FcRn is expressed in podocytes and proximal tubular epithelial cells.5 Overall, renal FcRn reclaims albumin but facilitates elimination of IgG.6 Tubular FcRn mediates IgG transcytosis.7 Podocytes use FcRn to clear IgG from the glomerular basement membrane (GBM).8 IgG accumulates in the glomeruli of aged Fcrn−/− mice due to impaired clearance of IgG from the GBM, and saturating this clearance mechanism by excess ligand potentiates the pathogenicity of nephrotoxic sera in wild-type mice. Podocyte FcRn has been postulated to be involved in the clearance of immune complexes (ICs) present in pathologic conditions such as membranous nephropathy.5 Expression of FcRn in human podocytes is increased in various immune-mediated glomerular diseases.9 Given its role in IgG and albumin handling in the kidneys and systemically, FcRn can be expected to influence the development of immune-mediated kidney diseases at multiple levels. This conjecture awaits experimental verification.To determine the role of FcRn in IgG-mediated glomerular disease, we asked how FcRn deficiency alters the course of disease in mice immunized with the NC1 domain of α3 type IV collagen (α3NC1). We chose this antigen because of its reported ability to induce disease in C57Bl/6 (B6) mice,10 corroborated in pilot studies (Supplemental Figure 1). Fcrn−/− mice are hypoalbuminemic due to impaired albumin recycling,11 and also exhibit reduced urinary albumin excretion.12 As a control for this potential confounder, we used FCRN-humanized mice, which have normal serum albumin because human FcRn recycles mouse albumin but not mouse IgG.13All mice immunized with α3NC1 developed circulating mouse IgG anti-α3NC1 antibodies, which reached the maximum titer about 6 weeks later and gradually declined thereafter. At all times, the levels of mouse IgG anti-α3NC1 antibodies in sera from Fcrn−/− mice and FCRN-humanized mice were approximately 50%–70% lower than those in wild-type mouse sera (Figure 1A). The results were similar for mouse IgG1, IgG2b, and IgG2c anti-α3NC1 antibodies (Supplemental Figure 2). Wild-type B6 mice immunized with α3NC1 started developing progressive albuminuria 8–10 weeks later (Figure 1B). By week 14, the urinary albumin creatinine ratio increased approximately 100-fold, and hypoalbuminemia developed (Figure 1C). Urinary albumin excretion in Fcrn−/− mice and FCRN-humanized mice immunized with α3NC1 was not significantly higher than in adjuvant-immunized control mice. No mice developed renal failure (Supplemental Figure 3).Open in a separate windowFigure 1.FcRn ablation reduces serum levels of mouse IgG anti-α3NC1 antibodies and prevents the development of albuminuria in α3NC1-immunized mice. (A) The left panel shows circulating mIgG anti-α3NC1 antibodies from C57Bl6 wild-type mice (○), Fcrn−/− mice (□), FCRN-humanized (hFCRN) mice (◇), and the control CFA group (△), which are assayed by indirect ELISA in plates coated with α3NC1 (100 ng/well). Mouse sera are diluted 1:5000. The right panel shows the significance of circulating mIgG anti-α3NC1 antibody differences among groups at week 12, as assessed by one-way ANOVA followed by Bonferroni post tests for pairwise comparisons. (B) The left panel shows that the urinary albumin creatinine ratio (mean±SEM) time course is monitored in C57Bl6 wild-type mice (○), Fcrn−/− mice (□), and hFCRN mice (◇) immunized with α3NC1 (n=5–8 mice in each group, from two separate experiments). Mice in the control group (△) are immunized with adjuvant alone (n=9). The right panel shows the urinary albumin creatinine ratio (mean±SEM) at 14 weeks, when mice are euthanized. The significance of differences among groups is assessed by one-way ANOVA followed by Bonferroni post tests for pairwise comparisons. (C) The left panel shows SDS-PAGE analysis of serum (0.5 µl/lane) and urine samples (2 µl/lane) from CFA-immunized control mice (a) and α3NC1-immunized wild-type mice (b), Fcrn−/− mice (c), and hFCRN mice (d) collected at week 14. The right panel presents a densitometric analysis of the relative levels of albumin in mouse serum samples showing that α3NC1-immunized wild-type mice developed hypoalbuminemia. *P<0.05 by two-tailed t test versus CFA-immunized wild-type mice; **P<0.01; ***P<0.001. ns, not significant; WT, wild type.At 14 weeks after α3NC1 immunization, kidneys examined by light microscopy showed mild glomerular pathology, with few crescents and relatively little inflammation (Figure 2A), similar to α3NC1-immunized DBA/1 mice with comparable albuminuria.14,15 Electron microscopy showed extensive subepithelial IC deposits surrounded by an expanded GBM and effacement of podocyte foot processes in α3NC1-immunized B6 mice, whereas Fcrn−/− mice had fewer subepithelial deposits (Figure 2B, Supplemental Figure 4). Immunofluorescence staining showed granular capillary loop deposition of mouse IgG, exogenous antigen, C3, and C5b-9, more intense in wild-type mice than in Fcrn−/− mice and FCRN-humanized mice (Figure 2, Ca–Cp, Supplemental Figure 5). A loss of nephrin staining, indicative of podocyte injury, occurred in α3NC1-immunized B6 mice but not in Fcrn−/− mice or FCRN-humanized mice (Figure 2, Cq–Ct).Open in a separate windowFigure 2.FcRn deficiency reduces formation of pathogenic subepithelial ICs. (A) Light microscopic evaluation of kidneys from adjuvant-immunized control mice (a) and α3NC1-immunized wild-type mice (b) and Fcrn−/− mice (c) revealed few pathogenic changes and the absence of glomerular inflammation (periodic acid–Schiff staining). (B) Transmission electron microscopy shows normal GBM (arrow) and podocyte foot processes in control mice (a), extensive subepithelial electron dense deposits (arrowhead), thickened GBM, and podocyte foot process effacement in α3NC1-immunized wild-type mice (b), and fewer IC deposits in the Fcrn−/− mice (c). (C) Immunofluorescence analysis of kidneys from adjuvant-immunized control mice (a, e, i, m, and q) and α3NC1-immunized wild-type mice (b, f, j, n, and r), FcRn−/− mice (c, g, k, o, and s), and hFCRN mice (d, h, l, p, and t) evaluate the deposition of mouse IgG (a–d), exogenous α3NC1 antigen stained by mAb RH34 (e–h), mouse C3c (i–l), C5b-9 (m–p), and nephrin staining (q–t) at 14 weeks. Wild-type mice exhibit linear-granular GBM deposition of mouse IgG and granular GBM deposition of exogenous antigen, C3, and C5b-9, which are attenuated in Fcrn−/− mice and hFCRN mice and essentially absent in control mice. Compared with control mice, α3NC1-immunized wild-type mice but not Fcrn−/− or hFCRN mice exhibit a loss of nephrin staining, indicative of podocyte injury. WT, wild type; EM, electron microscopy, PAS, periodic acid–Schiff. Original magnification, ×400 in A; ×2850 in B; ×200 in C.Because B6 mice immunized with bovine GBM NC1 hexamers have normal kidney function and histology despite linear GBM deposition of IgG autoantibodies binding to mouse α345(IV) collagen (Supplemental Figure 1), the question arises as to what causes proteinuria in α3NC1-immunized mice. Because the clinical presentation, morphology, and effector mechanisms depend on where ICs are localized in the capillary wall, we compared IgG distribution in α3NC1-immunized mice and mice injected with anti-α3NC1 antibodies modeling anti-GBM autoantibodies. The distribution and relative abundance of mouse IgG, as imaged by immunoperoxidase immunoelectron microscopy and stochastic optical reconstruction microscopy (STORM), a method for super-resolution fluorescence microscopy, were concordant. In α3NC1-immunized mice, IgG deposition was abundant in the areas of expanded GBM and especially in regions corresponding to the subepithelial dense deposits seen by routine electron microscopy. By contrast, in mice injected with α3NC1-specific anti-GBM mAb, the IgG was confined to an ultrastructurally normal GBM that lacked subepithelial deposits (Figure 3).Open in a separate windowFigure 3.Localization of IgG by high-resolution imaging. The localization of mouse IgG in glomerular capillary walls of wild-type mice immunized with α3NC1 (A, C–E), or intravenously injected with anti-mouse α3NC1 IgG mAb 8D1 (B, F–H) is determined by immunoperoxidase electron microscopy (A and B) and STORM imaging (C–H). In A, the GBM is irregularly thickened, and abundant electron dense peroxidase reaction product is present in discontinuous, subepithelial patterns beneath broadly effaced podocyte foot processes (arrows). In B, the peroxidase reaction product is diffusely present throughout the GBM (arrowhead), but less abundant compared with A. Electron dense deposits are absent, and podocyte foot process architecture appears normal. (C–E) By STORM imaging, anti-agrin (blue) identifies both normal and thickened areas of the GBM, both of which contain dense accumulations of mouse IgG throughout (red). The electron microscopy correlation in E shows GBM staining with respect to the podocytes and endothelial cells. (F–H) IgG mAb 8D1 (red) is present in the GBM, which shows no evidence of thickening. CL, capillary lumen; EM, electron microscopy En, endothelium;Po, podocyte.Subepithelial ICs, a hallmark of human membranous nephropathy (MN), form when IgG antibodies bind to podocyte antigens, such as phospholipase A2 receptor (PLA2R) and neutral endopeptidase (NEP), or to planted antigens, such as cationic BSA.1618 Subsequent expansion of the GBM, complement activation, and podocyte injury by C5b-9 cause proteinuria. Although it is unexpected, formation of subepithelial ICs in α3NC1-immunized mice may be explained by exogenous α3NC1 deposited in glomeruli acting as a planted antigen.19 Alternatively, anti-α3NC1 antibodies in complex with α3NC1 antigen may act as surrogate antipodocyte antibodies, because α3NC1-containing ICs bind to podocytes.20 After four immunizations with α3NC1 monomers, B6 mice and DBA/1 mice eventually develop crescentic GN by 26 and 10 weeks, respectively.10,14 The combination of subepithelial ICs and crescentic anti-GBM antibody GN was most recently described in a series of eight patients with circulating anti-α3NC1 autoantibodies but undetectable anti-PLA2R autoantibodies.21In contrast to wild-type B6 mice, congenic Fcrn−/− mice and FCRN-humanized mice did not develop albuminuria after α3NC1 immunization. Their resistance to proteinuria was associated with lower serum titers of anti-α3NC1 IgG antibodies and reduced glomerular deposition of IgG, antigen, C3, and C5b-9. Because C5b-9 is an essential mediator of podocyte damage and proteinuria by subepithelial ICs,22,23 reduced complement activation potentially explains the attenuated glomerular pathology in FcRn-deficient mice. The resistance of FCRN-humanized mice indicates that FcRn promotes IC-mediated glomerular disease due to its interaction with IgG rather than albumin. We propose that FcRn promotes the development of subepithelial ICs and subsequent glomerular injury primarily by maintaining higher serum levels of pathogenic IgG (Supplemental Figure 6). However, we cannot formally exclude a possible pathogenic role of podocyte FcRn, whose stimulation by ICs may induce maladaptive signaling.9 Future studies in mice with podocyte-specific ablation of FcRn would address this possibility.Our findings identify FcRn as a potential target for therapeutic intervention in IC-mediated glomerular diseases, typically treated with nonspecific immunosuppressants that are toxic and sometimes ineffective. More specific therapies include ablation of B cells by rituximab. In patients with idiopathic MN who respond to rituximab therapy, serum levels of anti-PLA2R IgG autoantibodies decline over a period of many months, and their disappearance is followed by resolution of proteinuria.24 The slow decline in proteinuria is problematic for patients already suffering from complications of nephrotic syndrome, who would benefit from ancillary therapies that reduce pathogenic IgG antibodies more rapidly. This may be achieved by inhibiting FcRn.One implementation of this concept is therapy with high-dose intravenous Ig (HD-IVIG). HD-IVIG accelerates the degradation of IgG by saturating FcRn,25 one of the mechanisms that explain the beneficial effects of HD-IVIG therapy in some autoimmune diseases.3 In pregnant women with circulating anti-NEP alloantibodies mediating antenatal MN, treatment with HD-IVIG reduces the titers of IgG alloantibodies by approximately 30% within 2–3 weeks.26 However, HD-IVIG is inefficient, because large amounts of IgG (1–2 g/kg) cause relatively modest reductions in pathogenic IgG titers. Specific FcRn inhibitors recapitulate this activity of HD-IVIG more effectively at lower doses. By reducing pathogenic IgG levels, function-blocking anti-FcRn mAbs ameliorate experimental myasthenia gravis in rats,27 and engineered IgG “Abdegs” that bind with high affinity to FcRn ameliorate arthritis transferred by K/BxN serum.28To assess the translational potential of our findings, we asked whether pharmacologic blockade of human FcRn can reproduce the effects of genetic FcRn deficiency. To this end, FCRN-humanized and Fcrn−/− mice were passively immunized with human IgG containing anti-α3NC1 (Goodpasture) autoantibodies. To inhibit human FcRn, we used a lysine analog of SYN1436 (Figure 4A),29 a peptide that binds with subnanomolar affinity to human FcRn, thus preventing IgG binding.30 In vivo, SYN1436 reduces IgG levels in cynomolgus monkeys by 80%.30 Serum anti-α3NC1 autoantibodies in FCRN-humanized mice treated with anti-FcRn peptide, but not with control peptide, sharply decreased to the same levels as in Fcrn−/− mice (Figure 4B), and were no longer detected after 4 days. In mice, human IgG elicits murine anti-human IgG antibodies, forming ICs that can deposit in glomeruli, as shown in active serum sickness models. Glomerular deposition of ICs containing human IgG was abolished in mice treated with anti-FcRn peptide, but not with control peptide (Figure 4C). Linear GBM deposition of human anti-GBM IgG was not observed, because the epitopes recognized by Goodpasture autoantibodies are completely inaccessible in the mouse GBM.31 These results provide proof of concept that therapies targeting human FcRn effectively lower serum levels of pathogenic human IgG autoantibodies, which could be beneficial in patients with IgG-mediated kidney diseases. Because FcRn also mediates the trans-placental transfer of IgG from mother to the fetus, FcRn inhibition may be particularly attractive for preventing antenatal MN caused by maternal anti-NEP alloantibodies.Open in a separate windowFigure 4.Pharmacologic blockade of human FcRn accelerates the catabolism of human IgG autoantibodies in FCRN-humanized mice. (A) Structure of a peptide that binds with high affinity to human FcRn, competitively inhibiting its interaction with human IgG (top). The control peptide (bottom) containing D-amino acids does not bind to human FcRn. Pen, Sar, and NMeLeu denote penicillamine, sarcosine, and N-methyl-leucine, respectively. (B) Serum level of human IgG anti-α3NC1 antibodies in FCRN-humanized mice treated with anti-FcRn peptide (▪) or control peptide (●) and in Fcrn−/− (▲) mice sera (n=3 in each group) is analyzed by indirect ELISA in plates coated with α3NC1 (100 ng/well). Mouse sera are diluted 1:500. (C) Kidney deposition of human IgG (a and b) and mouse IgG (c and d) in FCRN-humanized mice treated with control peptide (a and c) or anti-FcRn peptide (b and d) is evaluated by direct immunofluorescence staining. Treatment with anti-FcRn peptide prevents the glomerular deposition of ICs containing human IgG.  相似文献   
42.
43.
44.
45.
Geodorum (Orchidaceae) has approximately ten species, and is mainly distributed in tropical Asia. Among them, Geodorum eulophioides Schltr. is of major conservation concern as it has only four known populations, two each found in China and others in Burma. In this study, we developed 18 polymorphic microsatellites markers in G. eulophioides with the number of alleles ranging from two to 17. The expected and observed heterozygosities ranged from 0.046 to 0.918 and from 0.048 to 1.0000, respectively. The cross-species amplification rates for the sympatric G. recurvum (Roxb.) Alston and G. densiflorum (Lam.) Schltr. were 100 and 83.33 %, respectively. These markers developed would be useful for conservation and population genetic studies.  相似文献   
46.
47.

Background

Cholecystolithiasis is the most common disease treated by general surgery, with an incidence of about 0.15–0.22 %. The most common therapies are open cholecystectomy (OC) or laparoscopic cholecystectomy (LC). However, with a greater understanding of the function of the cholecyst, more and more patients and surgeons are aware that preserving the functional cholecyst is important for young patients, as well as patients who would not tolerate anesthesia associated with either OC or LC. Based on these considerations, we have introduced a notable, minimally invasive treatment for cholecystolithotomy.

Methods

We performed a retrospective review of patients with cholecystolithiasis who were unable to tolerate surgery or who insisted on preserving the functional cholecyst. Our particular approach can be simply described as ultrasound-guided percutaneous cholecystostomy combined with a choledochoscope for performing a cholecystolithotomy under local anesthesia.

Results

Ten patients with cholecystolithiasis were treated via this approach. All except one patient had their gallbladder stones totally removed under local anesthesia, without the aggressive procedures associated with OC or LC. The maximum number of gallbladder stones removed was 16, and the maximum diameter was 13 mm without lithotripsy. After the minimally invasive surgery, the cholecyst contractile functions of all patients were normal, confirmed via ultrasound after a high-fat diet. Complications such as bile duct injury, biliary fistula, and bleeding occurred significantly less often than with OC and LC. The recurrence rates for each of 2 post-operative years were about 11.11 % (1/9, excluding a failure case) with uncertainty surrounding recurrence or residue, and 22.22 % (2/9, including one non-recurrence patient with follow-up time of 22 months), respectively.

Conclusions

Ultrasound-guided percutaneous cholecystostomy combined with choledochoscope is a safe, efficient, and minimally invasive cholecystolithotomy method. We recommend this technique for the management of small stones (less than 15 mm) in high-risk surgical patients.  相似文献   
48.
目的总结1370例经尿道前列腺电切术经验,提高手术疗效。方法回顾性分析1998年7月至2012年3月期间我院收治1370例BPH患者行TURP术的临床资料。年龄58~99岁,平均(67.4±5.5)岁。前列腺体积21~85ml,平均(53±4.4)ml。详细记录手术时间、术中出血量、术后留置尿管时间及手术并发症,统计并分析手术前后国际前列腺症状评分(IPSS)、生活质量评分(QOL)及残余尿量(Ruv)等指标。结果1370例患者中,成功施行TURP术1367例,中转开放手术3例。手术时间25~93min,平均(52.0±6.4)min。术中出血量30~800ml,平均(120.0±8.8)ml,输血12例。术后留置尿管2~9d,平均(4.5±1.1)d。术后随访3个月,IPSS、QOL及RUV与术前比较有统计学差异。术中水中毒1例,术后迟发性出血18例,暂时性尿失禁11例,尿道狭窄26例。结论TURP术具有创伤小、疗效好,安全有效,并发症少等的优点,充分的围手术期准备是手术顺利实施和减少并发症的重要保证,值得临床推广。  相似文献   
49.
Group A streptococcus (GAS) is an important human pathogen that causes a wide spectrum of diseases, ranging from mild throat and skin infections to severe invasive diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), a dextrorotatory morphinan and a widely used antitussive drug, has recently been reported to possess anti-inflammatory properties. In this study, we investigated the potential protective effect of DM in GAS infection using an air pouch infection mouse model. Our results showed that DM treatment increased the survival rate of GAS-infected mice. Bacterial numbers in the air pouch were lower in mice treated with DM than in those infected with GAS alone. The bacterial elimination efficacy was associated with increased cell viability and bactericidal activity of air-pouch-infiltrating cells. Moreover, DM treatment prevented bacterial dissemination in the blood and reduced serum levels of the proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-1β and the chemokines monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), and RANTES. In addition, GAS-induced mouse liver injury was reduced by DM treatment. Taken together, DM can increase bacterial killing and reduce inflammatory responses to prevent sepsis in GAS infection. The consideration of DM as an adjunct treatment in combination with antibiotics against bacterial infection warrants further study.  相似文献   
50.
Luo C  Seeburg PH  Sprengel R  Kuner R 《Pain》2008,140(2):358-367
The second messenger calcium is a key mediator of activity-dependent neural plasticity. How persistent nociceptive activity alters calcium influx and release in the spinal cord is not well-understood. We performed calcium-imaging on individual cell bodies and the whole area within laminae I and II in spinal cord slices from mice in the naïve state or 24 h following unilateral hindpaw plantar injection of complete Freund’s adjuvant. Calcium signals evoked by dorsal root stimulation at varying strengths displayed a steep rise and slow decay over 15–20 s and increased progressively with both increasing intensity and frequency of stimulation in naïve mice. Experiments with pharmacological inhibitors revealed that both ionotropic glutamate receptors and intracellular calcium stores contributed to maximal calcium signals in laminae I and II evoked by stimulating dorsal roots at 100 Hz frequency. Importantly, as compared to naïve mice, we observed that in mice with unilateral hindpaw inflammation, calcium signals were potentiated to 159 ± 10% in the ipsilateral dorsal horn and 179 ± 8% in the contralateral dorsal horn. In addition to the contribution from NMDA receptors, GluR-A-containing AMPA receptors were found to be critically required for the above changes in spinal calcium signals, as revealed by analysis of genetically modified mouse mutants, whereas intracellular calcium release was not required. Thus, these results suggest that there is an important functional link between calcium signaling in superficial spinal laminae and the development of inflammatory pain. Furthermore, they highlight the importance of GluR-A-containing calcium-permeable AMPA receptors in activity-dependent plasticity in the spinal cord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号