首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720110篇
  免费   127337篇
  国内免费   11075篇
耳鼻咽喉   21875篇
儿科学   51121篇
妇产科学   45576篇
基础医学   249782篇
口腔科学   47460篇
临床医学   163806篇
内科学   333994篇
皮肤病学   34299篇
神经病学   137916篇
特种医学   62436篇
外国民族医学   480篇
外科学   243356篇
综合类   47919篇
现状与发展   19篇
一般理论   512篇
预防医学   132815篇
眼科学   38878篇
药学   132308篇
  81篇
中国医学   8503篇
肿瘤学   105386篇
  2021年   16436篇
  2019年   15925篇
  2018年   21938篇
  2017年   16777篇
  2016年   17846篇
  2015年   21204篇
  2014年   28928篇
  2013年   40922篇
  2012年   56463篇
  2011年   60051篇
  2010年   35024篇
  2009年   31875篇
  2008年   53354篇
  2007年   56492篇
  2006年   56668篇
  2005年   54353篇
  2004年   50788篇
  2003年   48547篇
  2002年   46741篇
  2001年   85654篇
  2000年   88237篇
  1999年   74058篇
  1998年   20093篇
  1997年   18110篇
  1996年   17287篇
  1995年   16271篇
  1994年   14986篇
  1993年   13792篇
  1992年   56087篇
  1991年   54163篇
  1990年   52284篇
  1989年   50109篇
  1988年   46106篇
  1987年   44533篇
  1986年   42248篇
  1985年   40038篇
  1984年   29287篇
  1983年   24659篇
  1982年   14173篇
  1979年   25844篇
  1978年   17886篇
  1977年   14832篇
  1976年   13902篇
  1975年   14537篇
  1974年   17645篇
  1973年   17144篇
  1972年   16021篇
  1971年   15015篇
  1970年   13823篇
  1969年   12824篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
91.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
92.
European Journal of Orthopaedic Surgery & Traumatology - The goals of this study were to compare patient satisfaction and wound-related complications in patients receiving 2-octyl cyanoacrylate...  相似文献   
93.
94.
95.
Annals of Nuclear Medicine - The Response Evaluation Criteria In Solid Tumors (RECIST) is the most used radiological method for evaluating response after peptide receptor radionuclide therapy...  相似文献   
96.
97.
首都医科大学通过60年辛勤耕耘、精益求精,秉承“顶天立地”的人才培养理念,为社会培养了大批高水平的学术型与应用型医药卫生人才。回顾学校60年来本专科教育、全科医学教育、国际教育、研究生教育的人才培养成果,以总结经验并鼓舞全体首医人进一步求真务实、凝心聚力、积极进取、追求卓越,努力将学校建设成为国际一流的研究型医科大学。  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号