Natural compound schweinfurthins are of considerable interest for novel therapy development because of their selective anti-proliferative activity against human cancer cells. We previously reported the isolation of highly active schweinfurthins E-H, and in the present study, mechanisms of the potent and selective anti-proliferation were investigated. We found that schweinfurthins preferentially inhibited the proliferation of PTEN deficient cancer cells by indirect inhibition of AKT phosphorylation. Mechanistically, schweinfurthins and their analogs arrested trans-Golgi-network trafficking, an intracellular vesicular trafficking system, resulting in the induction of endoplasmic reticulum stress and the suppression of both lipid raft-mediated PI3K activation and mTOR/RheB complex formation, which collectively led to an effective inhibition of mTOR/AKT signaling. The trans-Golgi-network traffic arresting effect of schweinfurthins was associated with their in vitro binding activity to oxysterol-binding proteins that are known to regulate intracellular vesicular trafficking. Moreover, schweinfurthins were found to be highly toxic toward PTEN-deficient B cell lymphoma cells, and displayed 2 orders of magnitude lower activity toward normal human peripheral blood mononuclear cells and primary fibroblasts in vitro. These results revealed a previously unrecognized role of schweinfurthins in regulating trans-Golgi-network trafficking, and linked mechanistically this cellular effect with mTOR/AKT signaling and with cancer cell survival and growth. Our findings suggest the schweinfurthin class of compounds as a novel approach to modulate oncogenic mTOR/AKT signaling for cancer treatment. 相似文献
Hinesol is a unique sesquiterpenoid isolated from the Chinese traditional medicine, Atractylodes lancea rhizome. In a previous study, we screened various natural products in human leukemia HL-60 cells and identified an essential oil fraction from A. lancea rhizome that exhibited apoptosis-inducing activity in these cells; hinesol was subsequently shown to be the compound responsible for this apoptosis-inducing activity. In this study, we describe the cytotoxic effects and molecular mechanisms of hinesol in HL-60 cells. The antitumor effect of hinesol was associated with apoptosis. When HL-60 cells were treated with hinesol, characteristic features of apoptosis, such as nuclear fragmentation and DNA fragmentation, were observed. These growth-inhibitory and apoptosis-inducing activities of hinesol in leukemia cells were much stronger than those of β-eudesmol, another compound isolated from the essential oil fraction. Furthermore, hinesol induced activation of c-Jun N-terminal kinase (JNK), but not p38, prior to the onset of apoptosis. These results suggested that hinesol induced apoptosis through the JNK signaling pathway in HL-60 cells. Therefore, hinesol may represent a novel medicinal drug having indications in the treatment of various cancers, including leukemia.
A patient with acute hepatic insufficiency induced by a drug presented to our institution, and we performed a novel plasmapheresis that we call plasma dia-filtration (PDF). The patient was a 36 year old woman. She underwent 11 sessions of PDF for a duration of about 9 h for each procedure using the Evacure EC-2A filter together with 20 units of fresh frozen plasma and dialysate simultaneously. Serum levels of total bilirubin and prothrombin time were significantly improved after she underwent each procedure. However, after the third procedure the levels returned to the same level as on the previous day. Encephalopathy improved after the first procedure, and this improvement was maintained until the ninth procedure. The patient prepared to undergo liver transplantation after the tenth procedure because of the development of hepatic coma, but she died of respiratory insufficiency before undergoing the procedure. Accordingly in this case, PDF worked to maintain liver function in acute liver failure and may act as bridge therapy until the patient can undergo liver transplantation. 相似文献
BACKGROUND: Salt status plays a pivotal role in angiotensin-II-induced organ damage by regulating reactive oxygen species status, and it is reported that reactive oxygen species activate mineralocorticoid receptors. METHOD: To clarify the role of reactive oxygen species-related mineralocorticoid receptor activation in angiotensin-II-induced cardiac dysfunction, we examined the effect of the following: salt status; an MR antagonist, eplerenone; and an antioxidant, tempol in angiotensin-II-loaded Sprague-Dawley rats. RESULTS: Angiotensin-II/salt-loading elevated blood pressure, and neither eplerenone nor tempol antagonized the rise in blood pressure significantly. Left ventricular diastolic function was monitored by measuring peak velocity of a mitral early inflow (E), the ratio of mitral early inflow to atrial contraction related flow (E/A), deceleration time of mitral early inflow and -dP/dt, the time constant (T), and filling pressure (left ventricular end-diastolic pressure) by echocardiography or cardiac catheterization. Despite the suppressed serum aldosterone, left ventricular diastolic function was deteriorated with angiotensin II/high salt, but not affected by angiotensin II/low salt. However, angiotensin-II/salt-induced cardiac dysfunction was restored by eplerenone and tempol. Nicotinamide adenine dinucleotide phosphateoxidase-derived superoxide formation was greater in the hearts of the angiotensin II/high-salt rats than of the angiotensin II/low-salt rats. The expression of the Na(+) -H(+) exchanger isoform 1, a target of mineralocorticoid receptor activation, was significantly increased in the angiotensin II/high-salt group. Both tempol and eplerenone inhibited the angiotensin-II/salt-induced upregulation of Na(+) -H(+) exchanger isoform 1. CONCLUSION: These findings demonstrate that mineralocorticoid receptor activation by oxidative stress can cause left ventricular diastolic dysfunction in a rat model of mild hypertension. 相似文献