首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214883篇
  免费   21226篇
  国内免费   15043篇
耳鼻咽喉   1686篇
儿科学   2719篇
妇产科学   2402篇
基础医学   22339篇
口腔科学   4111篇
临床医学   29939篇
内科学   28163篇
皮肤病学   2390篇
神经病学   9091篇
特种医学   7539篇
外国民族医学   100篇
外科学   18327篇
综合类   43367篇
现状与发展   66篇
一般理论   11篇
预防医学   17563篇
眼科学   6012篇
药学   23855篇
  291篇
中国医学   15298篇
肿瘤学   15883篇
  2024年   788篇
  2023年   3518篇
  2022年   8635篇
  2021年   10710篇
  2020年   8523篇
  2019年   6709篇
  2018年   6911篇
  2017年   7149篇
  2016年   6183篇
  2015年   10073篇
  2014年   12224篇
  2013年   11787篇
  2012年   17648篇
  2011年   19120篇
  2010年   13599篇
  2009年   11075篇
  2008年   12715篇
  2007年   12694篇
  2006年   11653篇
  2005年   10947篇
  2004年   7082篇
  2003年   6483篇
  2002年   5425篇
  2001年   4444篇
  2000年   4273篇
  1999年   4097篇
  1998年   2586篇
  1997年   2527篇
  1996年   1925篇
  1995年   1661篇
  1994年   1445篇
  1993年   929篇
  1992年   1018篇
  1991年   902篇
  1990年   812篇
  1989年   673篇
  1988年   590篇
  1987年   521篇
  1986年   358篇
  1985年   278篇
  1984年   136篇
  1983年   116篇
  1982年   56篇
  1981年   55篇
  1980年   36篇
  1979年   43篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows:(1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group.(2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group.(3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury.(4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group.(5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2(ACSF2) and iron-responsive element-binding protein 2(IREB2) were up-regulated in the Deferoxamine group.(6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury.  相似文献   
92.
93.
94.
95.
Helicobacter pylori (H. pylori) is a main risk factor for gastric cancer (GC). Epithelial-mesenchymal transition (EMT) is involved in the development and progression of H. pylori-associated GC. However, the exact molecular mechanism of this process remains unclear. The AKT/GSK3β signaling pathway has been demonstrated to promote EMT in several types of cancer. The present study investigated whether H. pylori infection induced EMT, and promoted the development and metastasis of cancer in the normal gastric mucosa, and whether this process was dependent on AKT activation. The expression levels of the EMT-associated proteins, including E-cadherin and N-cadherin, were determined in 165 gastric mucosal samples of different disease stages by immunohistochemical analysis. The expression levels of E-cadherin, N-cadherin, AKT, phosphorylated (p-)AKT (Ser473), GSK3β and p-GSK3β (Ser9) were further determined in H. pylori-infected Mongolian gerbil gastric tissues and cells co-cultured with H. pylori by immunohistochemical analysis and western blotting. The results indicated that the expression levels of the epithelial marker E-cadherin were decreased, whereas the expression levels of the mesenchymal marker N-cadherin were increased during gastric carcinogenesis. Their expression levels were associated with H. pylori infection. Furthermore, H. pylori infection resulted in downregulation of E-cadherin expression and upregulation of N-cadherin expression in Mongolian gerbils and GES-1 cells. In addition, an investigation of the associated mechanism of action revealed that p-AKT (Ser473) and p-GSK3β (Ser9) were activated in GES-1 cells following co-culture with H. pylori. Furthermore, following pretreatment of the cells with the AKT inhibitor VIII, the expression levels of E-cadherin, N-cadherin, p-AKT and p-GSK3β did not show significant differences between GES-1 cells that were co-cultured with or without H. pylori. The levels of p-AKT and p-GSK3β were increased in H. pylori-infected Mongolian gerbils. In conclusion, the present study demonstrated that H. pylori infection activated AKT and resulted in the phosphorylation and inactivation of GSK3β, which in turn promoted early stage EMT. These effects were AKT-dependent. This mechanism may serve as a prerequisite for GC development.  相似文献   
96.
The developing CNS is exposed to physiological hypoxia, under which hypoxia-inducible factor α (HIFα) is stabilized and plays a crucial role in regulating neural development. The cellular and molecular mechanisms of HIFα in developmental myelination remain incompletely understood. A previous concept proposes that HIFα regulates CNS developmental myelination by activating the autocrine Wnt/β-catenin signaling in oligodendrocyte progenitor cells (OPCs). Here, by analyzing a battery of genetic mice of both sexes, we presented in vivo evidence supporting an alternative understanding of oligodendroglial HIFα-regulated developmental myelination. At the cellular level, we found that HIFα was required for developmental myelination by transiently controlling upstream OPC differentiation but not downstream oligodendrocyte maturation and that HIFα dysregulation in OPCs but not oligodendrocytes disturbed normal developmental myelination. We demonstrated that HIFα played a minor, if any, role in regulating canonical Wnt signaling in the oligodendroglial lineage or in the CNS. At the molecular level, blocking autocrine Wnt signaling did not affect HIFα-regulated OPC differentiation and myelination. We further identified HIFα–Sox9 regulatory axis as an underlying molecular mechanism in HIFα-regulated OPC differentiation. Our findings support a concept shift in our mechanistic understanding of HIFα-regulated CNS myelination from the previous Wnt-dependent view to a Wnt-independent one and unveil a previously unappreciated HIFα–Sox9 pathway in regulating OPC differentiation.SIGNIFICANCE STATEMENT Promoting disturbed developmental myelination is a promising option in treating diffuse white matter injury, previously called periventricular leukomalacia, a major form of brain injury affecting premature infants. In the developing CNS, hypoxia-inducible factor α (HIFα) is a key regulator that adapts neural cells to physiological and pathologic hypoxic cues. The role and mechanism of HIFα in oligodendroglial myelination, which is severely disturbed in preterm infants affected with diffuse white matter injury, is incompletely understood. Our findings presented here represent a concept shift in our mechanistic understanding of HIFα-regulated developmental myelination and suggest the potential of intervening with an oligodendroglial HIFα-mediated signaling pathway to mitigate disturbed myelination in premature white matter injury.  相似文献   
97.
98.
随着对肿瘤热疗和肿瘤免疫微环境(TIME)的深入研究,近年来热疗对TIME的作用越来越受到学者们的重视。本文就目前国内外研究进展,对热疗与TIME中几类主要免疫细胞和免疫相关细胞因子的影响及作用机制作一综述。全面而透彻的了解热疗对TIME的调控作用,有助于为肿瘤治疗提供新的思路和方法。  相似文献   
99.
Melatonin induces apoptosis in many different cancer cell lines, including colorectal cancer. However, the precise mechanisms involved remain largely unresolved. In this study, we provide evidence to reveal a new mechanism by which melatonin induces apoptosis of colorectal cancer LoVo cells. Melatonin at pharmacological concentrations significantly suppressed cell proliferation and induced apoptosis in a dose‐dependent manner. The observed apoptosis was accompanied by the melatonin‐induced dephosphorylation and nuclear import of histone deacetylase 4 (HDAC4). Pretreatment with a HDAC4‐specific siRNA effectively attenuated the melatonin‐induced apoptosis, indicating that nuclear localization of HDAC4 is required for melatonin‐induced apoptosis. Moreover, constitutively active Ca2+/calmodulin‐dependent protein kinase II alpha (CaMKIIα) abrogated the melatonin‐induced HDAC4 nuclear import and apoptosis of LoVo cells. Furthermore, melatonin decreased H3 acetylation on bcl‐2 promoter, leading to a reduction of bcl‐2 expression, whereas constitutively active CaMKIIα(T286D) or HDAC4‐specific siRNA abrogated the effect of melatonin. In conclusion, the present study provides evidence that melatonin‐induced apoptosis in colorectal cancer LoVo cells largely depends on the nuclear import of HDAC4 and subsequent H3 deacetylation via the inactivation of CaMKIIα.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号