首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4296篇
  免费   181篇
  国内免费   22篇
耳鼻咽喉   217篇
儿科学   119篇
妇产科学   122篇
基础医学   504篇
口腔科学   16篇
临床医学   343篇
内科学   1216篇
皮肤病学   70篇
神经病学   364篇
特种医学   81篇
外科学   447篇
综合类   34篇
一般理论   2篇
预防医学   230篇
眼科学   122篇
药学   401篇
中国医学   2篇
肿瘤学   209篇
  2023年   20篇
  2022年   136篇
  2021年   247篇
  2020年   71篇
  2019年   88篇
  2018年   125篇
  2017年   95篇
  2016年   83篇
  2015年   97篇
  2014年   141篇
  2013年   215篇
  2012年   327篇
  2011年   377篇
  2010年   180篇
  2009年   134篇
  2008年   260篇
  2007年   292篇
  2006年   300篇
  2005年   303篇
  2004年   281篇
  2003年   239篇
  2002年   215篇
  2001年   20篇
  2000年   19篇
  1999年   19篇
  1998年   24篇
  1997年   16篇
  1996年   14篇
  1995年   9篇
  1994年   16篇
  1993年   11篇
  1992年   11篇
  1991年   13篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1980年   6篇
  1978年   5篇
  1977年   9篇
  1975年   3篇
  1971年   2篇
  1967年   2篇
  1966年   2篇
  1961年   2篇
排序方式: 共有4499条查询结果,搜索用时 234 毫秒
131.
132.
The gene encoding dual‐specificity tyrosine phosphorylation‐regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age‐associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell‐compartment‐specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two‐dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5–6.5 in the nucleus, 7.2–8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate‐affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment‐specific functions of DYRK1A may depend on its phosphorylation pattern. © 2013 Wiley Periodicals, Inc.  相似文献   
133.
The article presents the results of the analysis of the interactions between the single point incremental forming (SPIF) process parameters and the main roughness parameters of stiffened ribs fabricated in Alclad aluminium alloy panels. EN AW-7075-T6 and EN AW-2024-T3 Alclad aluminium alloy sheets were used as the research material. Panels with longitudinal ribs were produced with different values of incremental vertical step size and tool rotational speed. Alclad is formed of high-purity aluminium surface layers metallurgically bonded to aluminium alloy core material. The quality of the surface roughness and unbroken Alclad are key problems in SPIF of Alclad sheets destined for aerospace applications. The interactions between the SPIF process parameters and the main roughness parameters of the stiffened ribs were determined. The influence of forming parameters on average roughness Sa and the 10-point peak–valley surface roughness Sz was determined using artificial neural networks. The greater the value of the incremental vertical step size, the more prominent the ridges found in the inner surface of stiffened ribs, especially in the case of both Alclad aluminium alloy sheets. The predictive models of ANNs for the Sa and the Sz were characterised by performance measures with R2 values lying between 0.657 and 0.979. A different character of change in surface roughness was found for sheets covered with and not covered with a soft layer of technically pure aluminium. In the case of Alclad sheets, increasing the value of the incremental vertical step size increases the value of the surface roughness parameters Sa and Sz. In the case of the sheets not covered by Alclad, reduction of the tool rotational speed increases the Sz parameter and decreases the Sa parameter. An obvious increase in the Sz parameter was observed with an increase in the incremental vertical step size.  相似文献   
134.
In the present study, two different cermet coatings, WC–CrC–Ni and Cr3C2–NiCr, manufactured by the high-velocity oxy-fuel (HVOF) method were studied. They are labeled as follows: WC–CrC–Ni coating—WC and Cr3C2–NiCr coating—CrC. These coatings were deposited onto a magnesium alloy (AZ31) substrate. The goal of the study was to compare these two types of cermet coating, which were investigated in terms of microstructure features and selected mechanical properties, such as hardness, instrumented indentation, fracture toughness, and wear resistance. The results reveal that the WC content influenced the hardness and Young’s modulus. The most noticeable effect of WC addition was observed for the wear resistance. WC coatings had a wear intensity value that was almost two times lower, equal to 6.5·10−6 mm3/N·m, whereas for CrC ones it was equal to 12.6·10−6 mm3/N·m. On the other hand, the WC coating exhibited a lower value of fracture toughness.  相似文献   
135.
As part of the experiments herein, the mechanical properties of specimens made of poly-ether-ether-ketone (PEEK) material using 3D printing technology were determined. Two populations of specimens were investigated, the first of which contained an amorphous structure, while the other held a crystal structure. The studies also investigated the influence of the print directionality on the mechanical properties obtained. Static tensile, three-point bending, and impact tests were carried out. The results for the effect of the structure type on the tensile properties showed that the modulus of elasticity was approximately 20% higher for the crystal than for the amorphous PEEK form. The Poisson’s ratios were similar, but the ratio was slightly higher for the amorphous samples than the crystalline ones. Furthermore, the studies included a chemical PEEK modification to increase the hydrophilicity. For this purpose, nitrite and hydroxyl groups were introduced into the chain by chemical reactions. The results demonstrate that the modified PEEK specimens had worse thermoplastic properties than the unmodified specimens.  相似文献   
136.
In the present work, we investigated in detail the thermal/crystallization behavior and magnetic properties of materials with Fe84.5-xCoxNb5B8.5P2 (x = 0, 5, 10, 15 and 20 at.%) composition. The amorphous ribbons were manufactured on a semi-industrial scale by the melt-spinning technique. The subsequent nanocrystallization processes were carried out under different conditions (with/without magnetic field). The comprehensive studies have been carried out using differential scanning calorimetry, X-ray diffractometry, transmission electron microscopy, hysteresis loop analyses, vibrating sample magnetometry and Mössbauer spectroscopy. Moreover, the frequency (up to 300 kHz) dependence of power losses and permeability at a magnetic induction up to 0.9 T was investigated. On the basis of some of the results obtained, we calculated the values of the activation energies and the induced magnetic anisotropies. The X-ray diffraction results confirm the surface crystallization effect previously observed for phosphorous-containing alloys. The in situ microscopic observations of crystallization describe this process in detail in accordance with the calorimetry results. Furthermore, the effect of Co content on the phase composition and the influence of annealing in an external magnetic field on magnetic properties, including the orientation of the magnetic spins, have been studied using various magnetic techniques. Finally, nanocrystalline Fe64.5Co20Nb5B8.5P2 cores were prepared after transverse thermo-magnetic heat treatment and installed in industrially available portable heating equipment.  相似文献   
137.
The aim of the investigations was to determine the effect of parameters of refill friction stir spot welding (RFSSW) on the fracture load and failure mechanisms of the resulting joint. RFSSW joints were made in 7075-T6 Alclad aluminium alloy sheets using different welding parameters. The load capacity of joints was determined under tensile/shear loadings. Finite element-based numerical simulations of the joint-loading process were carried out, taking into account the variability of elasto-plastic properties of weld material through the joint cross-section. The influence of welding parameters on selected phenomena occurring during the destruction of the joint is presented. The considerations were supported by a fractographic analysis based on SEM images of fractures. It was found that there is a certain optimal amount of heat generated, which is necessary to produce the correct joint in terms of its load capacity. This value should not be exceeded, because it leads to weakening of the base material and thus to a reduction in the strength of the joint. Samples subjected to uniaxial tensile shear load showed three types of failure mode (tensile fracture, shear fracture, plug type fracture) depending on the tool rotational speed and duration of welding. Prediction of the fracture mode using FE-based numerical modelling was consistent with the experimental results. The samples that were damaged due to the tensile fracture of the lower sheet revealed a load capacity (LC) of 5.76 KN. The average value of LC for the shear fracture failure mechanism was 5.24 kN. The average value of the LC for plug-type fracture mode was 5.02 kN. It was found that there is an optimal amount of heat generated, which is necessary to produce the correct joint in terms of its LC. Excessive overheating of the joint leads to a weakening of the base metal and thus a reduction in the strength of the joint. Measurements of residual stresses along the axis specimens showed the presence of stresses with a certain constant value for the welded area on the side of the 1.6 mm thick plate.  相似文献   
138.
In this work, we reported on the development of lithography-free technology for the fabrication of nanopatterned Si substrates. The combination of two phenomena, the solid-state dewetting process and metal-assisted wet chemical etching, allowed for fabrication of Si nanocolumns on large areas in a relatively simple way. The process of dewetting the thin metal layer enabled formation of nickel nanoislands, which were used as a shadow mask in the deposition of a catalytic metal pattern. Application of the two-stage dewetting process with the repetition of the metal deposition and annealing step enabled us to obtain a significant increase in the surface coverage ratio and the surface density of the nanoislands. As a catalytic metal, a gold layer was applied in the metal-assisted wet chemical etching process. The obtained columnar nanostructures showed a great verticality and had a high aspect ratio. In the conducted studies, the maximum etching rate (at RT) was higher than 1.2 μm min−1. The etching rate increased with increasing concentration of oxidizing (H2O2) and etching (HF) agent, with a tendency to saturate for more concentrated solutions. The etching rate was significantly higher for Si substrates with a crystallographic orientation (115) than for (111), but there was no privileged direction of etching except for the direction vertical to the substrate. With increasing layer thickness of the catalytic metal a decrease in the metal-assisted wet chemical etching process efficiency was observed. The developed technology allows for fabrication of patterned substrates with a wide range of lateral dimension of nanocolumns and their density.

In this work, we reported on the development of lithography-free technology for the fabrication of nanopatterned Si substrates.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号