首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1633篇
  免费   135篇
  国内免费   8篇
耳鼻咽喉   13篇
儿科学   28篇
妇产科学   10篇
基础医学   229篇
口腔科学   17篇
临床医学   172篇
内科学   544篇
皮肤病学   14篇
神经病学   155篇
特种医学   43篇
外科学   226篇
综合类   10篇
预防医学   89篇
眼科学   7篇
药学   97篇
肿瘤学   122篇
  2023年   23篇
  2022年   23篇
  2021年   38篇
  2020年   39篇
  2019年   52篇
  2018年   66篇
  2017年   48篇
  2016年   43篇
  2015年   53篇
  2014年   57篇
  2013年   85篇
  2012年   125篇
  2011年   133篇
  2010年   72篇
  2009年   80篇
  2008年   121篇
  2007年   113篇
  2006年   129篇
  2005年   117篇
  2004年   95篇
  2003年   96篇
  2002年   69篇
  2001年   16篇
  2000年   9篇
  1999年   14篇
  1998年   16篇
  1997年   11篇
  1996年   5篇
  1995年   9篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1776条查询结果,搜索用时 187 毫秒
71.
Introduction: Inflammatory bowel diseases, such as Crohn’s disease (CD) and ulcerative colitis (UC), are widespread diseases (with an estimated 2.2 million Europeans affected), and even populations previously considered ‘low risk’ (such as Japan and India) are witnessing an increasing incidence. CD is a chronic, progressive immunologically driven disease, with an evolution characterized by succession of periods of progression and remission. New physiopathological pathways are continuously being discovered, the more we understand about how the disease appears and progresses, the more targets become available for the development of novel therapies.

Areas covered: Filgotinib is one of these promising new therapies; this article discusses the currently available data. We used an exhaustive search of the PubMed database to corroborate information regarding its chemical characteristics, and the studies evaluating clinical efficacy and safety.

Expert opinion: Up to now, the phase-II study evaluating Filgotinib yielded very promising results in moderate to severe CD patients, with good clinical response, mucosal healing, while having few and moderate adverse effects, both in anti-TNF naïve and resistant patients. Phase-III studies are still ongoing and will help decide whether Filgotinib will be a worthwhile drug in the treatment of CD and the best way to use it.  相似文献   

72.
BACKGROUND: Cardiac resynchronization therapy (CRT) is recommended in patients with ejection fraction <35%, QRS width> 120 ms, and New York Heart Association (NYHA) functional class III or IV despite optimal medical therapy. We aimed to define demographic, clinical, and electrocardiographic predictors of positive clinical response to CRT. METHODS AND RESULTS: Hundred consecutive patients fulfilling the recommended criteria were implanted with a CRT device. Demographic, clinical, two-dimensional echocardiographic and electrographic parameters were measured at baseline and after 6 months of simultaneous biventricular pacing. A positive response to CRT included an improvement of at least one NYHA functional class associated with an absence of hospitalization for worsening heart failure. At the end of follow-up, 12 patients were dead and 71% of the patients were classified as responders. After 6 months of CRT, the ejection fraction was significantly higher (P = 0.035) in responders versus nonresponders. Multivariate analysis identified three independent predictors of positive response to CRT: an idiopathic origin of the cardiomyopathy (P = 0.043), a wider QRS before implantation (P = 0.017), and a narrowing of the QRS after implantation (P = 0.037). CONCLUSION: An idiopathic origin of the cardiomyopathy, a wider QRS before implantation, and a narrowing of the QRS width after implantation were identified as independent predictors of clinical positive response to CRT.  相似文献   
73.
74.
75.
European Spine Journal - To evaluate whether left hip positioning widened the access corridor using oblique lateral interbody fusion (OLIF) approach during right lateral decubitus (RLD). Ten...  相似文献   
76.

Objective:

Borderline and antisocial personality disorders (PDs) share common clinical features (impulsivity, aggressiveness, substance use disorders [SUDs], and suicidal behaviours) that are greatly overrepresented in prison populations. These disorders have been associated biologically with testosterone and cortisol levels. However, the associations are ambiguous and the subject of controversy, perhaps because these heterogeneous disorders have been addressed as unitary constructs. A consideration of profiles of people, rather than of exclusive diagnoses, might yield clearer relationships.

Methods:

In our study, multiple correspondence analysis and cluster analysis were employed to identify subgroups among 545 newly convicted inmates. The groups were then compared in terms of clinical features and biological markers, including levels of cortisol, testosterone, estradiol, progesterone, and sulfoconjugated dehydroepiandrosterone (DHEA-S).

Results:

Four clusters with differing psychiatric, criminal, and biological profiles emerged. Clinically, one group had intermediate scores for each of the tested clinical features. Another group comprised people with little comorbidity. Two others displayed severe impulsivity, PD, and SUD. Biologically, cortisol levels were lowest in the last 2 groups and highest in the group with less comorbidity. In keeping with previous findings reported in the literature, testosterone was higher in a younger population with severe psychiatric symptoms. However, some apparently comparable behavioural outcomes were found to be related to distinct biological profiles. No differences were observed for estradiol, progesterone, or DHEA-S levels.

Conclusions:

The results not only confirm the importance of biological markers in the study of personality features but also demonstrate the need to consider the role of comorbidities and steroid coregulation.  相似文献   
77.
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti–IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.

Powerful selection technologies have made in vitro evolution of protein binders more efficient and paved the way for the use of tailor-made antibodies in therapy. After initial selections of antibody candidates with desired specificity, lead antibodies are typically improved by affinity maturation in multiple rounds of randomization and selection (1) to reach the subnanomolar affinities ideally required for targeting soluble ligands (24). This is usually attempted by introduction of point substitutions, either at random positions across the entire V-gene (5, 6) or in the complementary-determining regions (CDRs; e.g., by CDR walking mutagenesis) (7).In Nature, diversification of the primary antibody repertoire occurs by several mechanisms that generate variation in the regions forming the antigen-binding site, the CDRs, including considerable length variation (811) that is initially introduced by recombination of V(D)J gene segments. Length variations are concentrated in the CDR3 region (12), at the junctions of the joined segments, where additional diversity is produced by N- or P-nucleotide additions that can further extend the CDR3. The length of the CDRs considerably affects the topography of the combining site, as different shapes brought about by extension or shortening can form pockets, grooves, or fill space (13, 14).Following B cell stimulation by the antigen, further diversification of the antigen-binding interface is generated through somatic hypermutation (SHM) (15), involving mainly point mutagenesis that preferentially targets hotspots in the CDRs (16, 17). This process is initiated through deamination of cytosine to uracil by activation-induced cytidine deaminase (AID), leading to uracil:guanine mismatches (16). Upon removal of these uracil bases by base excision-repair enzymes, error-prone DNA polymerases are then recruited to fill in the gaps and introduce mutations around the position of the deaminated cytosines. Interestingly, up to 6% of the mutations generated by SHM are insertions and deletions (InDels) (18), which occur due to misalignment of repeated DNA sequences (19, 20). Thus, insertions occur by duplication, while deletions are brought about by removal of repeated sequences (21, 22).A small percentage of antibodies selected by in vivo SHM contain InDels in the CDRs 1 and 2 (1.6 to 6.5%) (2124), while junctional diversity by N- or P-nucleotide additions in the CDR3 confounds the analysis of SHM-derived InDels, leading to an underestimation of the total percentage of affinity-improving InDels. In vitro-directed evolution has been unsuitable for introduction of InDels at random positions into an antibody gene, because of restrictions in the diversity of InDels that could be introduced (i.e., insertions by duplication in in vitro SHM) (22, 25). Rational (26) or computational (27) strategies have been successful at introducing InDels in a few, carefully chosen positions instead of random sampling. In contrast, an unusually high percentage of InDels with a functional role among in vivo affinity matured broadly neutralizing antibodies (bnAbs) to HIV-1 (2830): ∼40% of the reported anti–HIV-1 bnAbs contain InDels that accumulate during in vivo SHM (28). Based on the frequent occurrence of InDels among multispecific, cross-reactive antibodies, one could infer that they provide a molecular solution for recognizing multiple targets by providing an altered interface (enlarged or tightened), possibly even involving conformational diversity (31). The accumulation of InDels in bnAbs has been attributed to extensive in vivo SHM, so that even positions that are rarely modified by SHM are also altered (17, 28).Insertions in the V-genes occur only by duplication of adjacent sequences (21, 22), so that the actual sequence diversity of the resulting insertions is limited because they repeat existing modules. To introduce more diversity in the inserted sequences, point mutations are required in subsequent rounds of SHM. However, since the CDRs can tolerate considerable length variation, it is likely that the antibody fold can accommodate a larger number of affinity-enhancing InDels compared to those observed in antibodies affinity-matured by SHM.Affinity gains by introduction of InDels have indeed been recognized (22, 25, 26, 32, 33) in in vitro-directed evolution, but often were by-products of campaigns focused on point mutations and not elicited systematically (32, 33). Only in mammalian cell surface display does the action of AID lead to InDels, just as AID brings about InDels in SHM in vivo (22, 25). In a seminal study by Bowers et al. (22), overexpression of AID enabled in vitro SHM of 53 antibodies against 21 antigens to identify InDels in multiple regions likely to improve binding, in particular to variable heavy domain (VH) and variable light domain (VL) CDR1, where 9 of 53 antibodies contained InDels. Despite the comprehensive nature of this study, AID-enabled insertions mirrored in vivo SHM and were therefore limited to direct duplication of adjacent sequences, not allowing the full exploration of length and sequence diversity in the insertions, and the low frequency of incorporation of in-frame InDels by AID (<0.1%) limited the combinatorial diversity explored. Finally, InDels have been introduced rationally based on structural analysis and natural length variation (26, 27). Taken together, only limited diversity of InDels in terms of length, position, and insert sequence across the variable domains has been explored thus far.Here we address this omission and explore libraries with in-frame InDels of different lengths and high diversity of inserted sequences at random positions across the entire antibody variable regions (Fig. 1). We applied a new transposon-based mutagenesis approach, dubbed TRIAD (transposition-based random insertion and deletion mutagenesis) (34) that introduces short in-frame insertions and deletions randomly across a gene (in sequences of steps following transposition that excise the transposon, religate the plasmid, and insert designed cassettes) (SI Appendix, Figs. S1 and S2). TRIAD was used here to build libraries with InDels at random positions across an entire single-chain variable fragment (scFv) gene. The antibody chosen for this campaign was the anti–IL-13 antibody BAK1 (35), a derivative of which, tralokinumab, is under clinical investigation for asthma (36). In addition, we built libraries that explore diversity in the different lengths of insertions in a semirandom approach, insertional-scanning mutagenesis (InScaM). These InDel libraries were starting points for antibody affinity evolution in vitro, leading to insertions in two loops that, together with two previously known point mutations, brought about a 256-fold affinity improvement. The observation of alternative routes to affinity maturation validate our strategy and suggest that InDel mutagenesis can complement existing approaches.Open in a separate windowFig. 1.Overview of the affinity maturation of the antibody BAK1 by transposon-based TRIAD and subsequent insertional scanning mutagenesis. TRIAD (Left) was applied to make libraries with deletions of one to three amino acids (step 1a) or single amino acid insertions (step 1b) at random positions across the scFv gene. These libraries were recombined (step 2) and four rounds of ribosome display selections for improved affinity to IL-13 were carried out by panning (step 3). The best binder was carrying an insertion in the VL FWR3 (BAK1-INS1). Scanning (Right) was used to guide the design of libraries with different lengths of insertions at targeted positions. A fraction of the insertion library generated in step 1b (5,632 variants) was screened by HTRF to identify variants with insertions that retained binding to IL-13 (step 4). Based on sequencing analysis, regions able to tolerate single amino acid insertions were identified (Fig. 4) and the VL CDR3 was chosen for targeted insertional mutagenesis. Libraries with zero to five amino acid insertions in targeted positions in the VL CDR3 were constructed (step 5), followed by four rounds of phage display selections for improved affinity to IL-13 (step 6).  相似文献   
78.
79.
Coronary microvascular dysfunction is a highly prevalent condition in both obstructive and nonobstructive coronary artery disease. Intracoronary thermodilution is a promising technique to investigate coronary microvascular (dys)function in vivo and to assess its most important metric: microvascular resistance. Here, the authors provide a practical review of bolus and continuous thermodilution for the measurement of coronary flow and microvascular resistance. The authors describe the basic principles of indicator-dilution theory and of coronary thermodilution and detail the practicalities of their application in the catheterization laboratory. Finally, the authors discuss contemporary clinical applications of coronary thermodilution–based microvascular assessment in humans and future perspectives.  相似文献   
80.
Platelets are formed from mature megakaryocytes (MKs) and arise from the development of long and thin cytoplasmic extensions called proplatelets. After platelet release, the senescent MKs (nucleus surrounded by some cytoplasm) undergo cell death by apoptosis. To explore the precise role of apoptosis in proplatelet formation, we grew human MKs from CD34(+) cells and assessed the possible role of caspases. Proteolytic maturation of procaspase-3 and procaspase-9 was detected by immunoblots in maturing MKs as well as in proplatelet-bearing MKs and senescent MKs. Cleavage of caspase substrates such as gelsolin or poly adenosine diphosphate (ADP)-ribose polymerase (PARP) was also detected. Interestingly, activated forms of caspase-3 were detected in maturing MKs, before proplatelet formation, with a punctuate cytoplasmic distribution, whereas a diffuse staining pattern was seen in senescent and apoptotic MKs. This localized activation of caspase-3 was associated with a mitochondrial membrane permeabilization as assessed by the release of cytochrome c, suggesting an activation of the intrinsic pathway. Moreover, these MKs with localized activated caspase-3 had no detectable DNA fragmentation. In contrast, when apoptosis was induced by staurosporine, diffuse caspase activation was seen; these MKs had signs of DNA fragmentation, and no proplatelet formation occurred. The pan-caspase inhibitor z-VAD.fmk as well as more specific inhibitors of caspase-3 and caspase-9 blocked proplatelet formation, whereas an inhibitor of calpeptin had no effect. Overexpression of Bcl-2 also inhibited proplatelet formation in maturing MKs. Thus, localized caspase activation is causal to proplatelet formation. We conclude that proplatelet formation is regulated by a caspase activation limited to only some cellular compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号