首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122165篇
  免费   12651篇
  国内免费   7613篇
耳鼻咽喉   906篇
儿科学   2193篇
妇产科学   1464篇
基础医学   11765篇
口腔科学   2010篇
临床医学   16721篇
内科学   15545篇
皮肤病学   1231篇
神经病学   5274篇
特种医学   3902篇
外国民族医学   39篇
外科学   9741篇
综合类   24940篇
现状与发展   31篇
一般理论   7篇
预防医学   11016篇
眼科学   2992篇
药学   14291篇
  172篇
中国医学   9148篇
肿瘤学   9041篇
  2024年   487篇
  2023年   1845篇
  2022年   4537篇
  2021年   5760篇
  2020年   4761篇
  2019年   3695篇
  2018年   3778篇
  2017年   3996篇
  2016年   3614篇
  2015年   5548篇
  2014年   6881篇
  2013年   7167篇
  2012年   10441篇
  2011年   10981篇
  2010年   7996篇
  2009年   6721篇
  2008年   7883篇
  2007年   7651篇
  2006年   6904篇
  2005年   6101篇
  2004年   4261篇
  2003年   3872篇
  2002年   3103篇
  2001年   2429篇
  2000年   2212篇
  1999年   1887篇
  1998年   1046篇
  1997年   1088篇
  1996年   844篇
  1995年   750篇
  1994年   710篇
  1993年   456篇
  1992年   420篇
  1991年   428篇
  1990年   384篇
  1989年   329篇
  1988年   286篇
  1987年   263篇
  1986年   219篇
  1985年   168篇
  1984年   118篇
  1983年   83篇
  1982年   41篇
  1981年   57篇
  1980年   33篇
  1979年   36篇
  1978年   27篇
  1977年   25篇
  1976年   18篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
65.
陈梅  付丛会  沈志强  徐英  贾杰  吴毅 《临床荟萃》2020,35(4):357-361
目的 观察互动式歌唱表演对轻中度阿尔茨海默病(AD)患者抑郁、精神行为症状及运动训练参与率的影响。方法 选取符合入组条件≥60周岁AD患者63例,随机分为研究组(31例)和对照组(32例)。所有受试患者常规药物治疗及常规运动训练,对照组接受被动性音乐治疗,研究组接受以互动歌唱为主的主动性音乐治疗,1次/d,每次1小时,每周训练5天,持续干预6个月。于治疗前、治疗1个月后、治疗3个月后、治疗6个月后分别采用康奈尔痴呆抑郁量表(CSDD)评分、阿尔茨海默病病理行为(BEHAVE AD)评分、参与率进行评估。结果 治疗1个月、3个月后,研究组CSDD评分较治疗前均降低(P<0.05);治疗6个月后,研究组患者CSDD评分较治疗前、治疗1个月、3个月后均显著降低(P<0.05),且与对照组比较差异有统计学意义(P<0.05)。治疗1个月、3个月后,研究组BEHAVE AD评分较治疗前均降低(P<0.05);治疗6个月后,研究组患者BEHAVE AD评分较治疗前、治疗1个月、3个月后均显著降低(P<0.05),且与对照组比较差异有统计学意义(P<0.05)。治疗6个月后,两组运动训练参与率组间比较差异有统计学意义(P<0.05)。结论 互动式歌唱表演可能对改善轻中度AD患者的抑郁和精神行为症状有着积极的疗效,同时对提高受试者运动训练的参与率可能有着更积极的疗效。  相似文献   
66.
Myostatin (MSTN) is a transforming growth factor-β (TGF-β) family member that normally acts to limit muscle growth. The function of MSTN is partially redundant with that of another TGF-β family member, activin A. MSTN and activin A are capable of signaling through a complex of type II and type I receptors. Here, we investigated the roles of two type II receptors (ACVR2 and ACVR2B) and two type I receptors (ALK4 and ALK5) in the regulation of muscle mass by these ligands by genetically targeting these receptors either alone or in combination specifically in myofibers in mice. We show that targeting signaling in myofibers is sufficient to cause significant increases in muscle mass, showing that myofibers are the direct target for signaling by these ligands in the regulation of muscle growth. Moreover, we show that there is functional redundancy between the two type II receptors as well as between the two type I receptors and that all four type II/type I receptor combinations are utilized in vivo. Targeting signaling specifically in myofibers also led to reductions in overall body fat content and improved glucose metabolism in mice fed either regular chow or a high-fat diet, demonstrating that these metabolic effects are the result of enhanced muscling. We observed no effect, however, on either bone density or muscle regeneration in mice in which signaling was targeted in myofibers. The latter finding implies that MSTN likely signals to other cells, such as satellite cells, in addition to myofibers to regulate muscle homeostasis.

Myostatin (MSTN) is a secreted signaling molecule that normally acts to limit skeletal muscle growth (for review, see ref. 1). Mice lacking MSTN exhibit dramatic increases in muscle mass throughout the body, with individual muscles growing to about twice the normal size (2). MSTN appears to play two distinct roles in regulating muscle size, one to regulate the number of muscle fibers that are formed during development and a second to regulate the growth of those fibers postnatally. The sequence of MSTN has been highly conserved through evolution, with the mature MSTN peptide being identical in species as divergent as humans and turkeys (3). The function of MSTN has also been conserved, and targeted or naturally occurring mutations in MSTN have been shown to cause increased muscling in numerous species, including cattle (35), sheep (6), dogs (7), rabbits (8), rats (9), swine (10), goats (11), and humans (12). Numerous pharmaceutical and biotechnology companies have developed biologic agents capable of blocking MSTN activity, and these have been tested in clinical trials for a wide range of indications, including Duchenne and facioscapulohumeral muscular dystrophy, inclusion body myositis, muscle atrophy following falls and hip fracture surgery, age-related sarcopenia, Charcot–Marie–Tooth disease, and cachexia due to chronic obstructive pulmonary disease, end-stage kidney disease, and cancer.The finding that certain inhibitors of MSTN signaling can increase muscle mass even in Mstn−/− mice revealed that the function of MSTN as a negative regulator of muscle mass is partially redundant with at least one other TGF-β family member (13, 14), and subsequent studies have identified activin A as one of these cooperating ligands (15, 16). MSTN and activin A share many key regulatory and signaling components. For example, the activities of both MSTN and activin A can be modulated extracellularly by naturally occurring inhibitory binding proteins, including follistatin (17, 18) and the follistatin-related protein, FSTL-3 or FLRG (19, 20). Moreover, MSTN and activin A also appear to share receptor components. Based on in vitro studies, MSTN is capable of binding initially to the activin type II receptors, ACVR2 and ACVR2B (also called ActRIIA and ActRIIB) (18) followed by engagement of the type I receptors, ALK4 and ALK5 (21). In previous studies, we presented genetic evidence supporting a role for both ACVR2 and ACVR2B in mediating MSTN signaling and regulating muscle mass in vivo. Specifically, we showed that mice expressing a truncated, dominant-negative form of ACVR2B in skeletal muscle (18) or carrying deletion mutations in Acvr2 and/or Acvr2b (13) have significantly increased muscle mass. One limitation of the latter study, however, was that we could not examine the consequence of complete loss of both receptors using the deletion alleles, as double homozygous mutants die early during embryogenesis (22). Moreover, the roles that the two type I receptors, ALK4 and ALK5, play in regulating MSTN and activin A signaling in muscle in vivo have not yet been documented using genetic approaches. Here, we present the results of studies in which we used floxed alleles for each of the type II and type I receptor genes in order to target these receptors alone and in combination in muscle fibers. We show that these receptors are functionally redundant and that signaling through each of these receptors contributes to the overall control of muscle mass.  相似文献   
67.
68.
目的 探讨营养风险与腹膜后肿瘤患者住院时间的相关性。方法 采用回顾性研究,选取2012年1月至2018年12月四川大学华西医院血管外科新入院腹膜后肿瘤患者60例,采用营养风险筛查表评估患者营养风险,收集患者体质指数、围术期血红蛋白和白蛋白水平、住院天数、术后恶心呕吐发生情况、术后排气、排便时间和首次进食时间。采用单因素分析比较不同患者住院时间,采用多重线性逐步回归分析患者住院时间的影响因素。结果 纳入的60例腹膜后肿瘤患者中,40例患者(66.7%)术前存在营养风险,52例患者(86.7%)术后存在营养风险;单因素分析显示,患者术前、术后营养风险 (术前P<0.001,术后P=0.043)、术前白蛋白 (P=0.019)、术后血红蛋白 (P=0.019)、术后白蛋白(P=0.025) 水平以及术后恶心呕吐 (P=0.001) 均会影响患者的住院时间;患者住院时间与围术期营养风险筛查工具评分、术后首次进食时间、术后排气时间和排便时间具有相关性,且相关性强(r=0.759~0.770; P<0.01);多因素分析显示术前营养风险是腹膜后肿瘤患者住院时间的重要预测因素(β=0.399)。结论 术前营养风险是腹膜后肿瘤患者住院时间的预测因子。  相似文献   
69.
70.
Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号