排序方式: 共有55条查询结果,搜索用时 15 毫秒
11.
Park SK Hong S Eum SY Lee IH Shin DO Cho JE Cho S Cho SN 《Tuberculosis (Edinburgh, Scotland)》2011,91(4):300-307
The immune responses of multidrug-resistant tuberculosis (MDR-TB) patients undergoing lung resection surgery were investigated in order to understand the mechanism of strong immune suppression in MDR-TB. We examined changes in cell-mediated immune response (CMI) of a total of sixteen MDR-TB patients, three of them extensively drug-resistant tuberculosis (XDR-TB) patients, after the removal of the heavily diseased lung section. The IFN-γ response to Mycobacterium tuberculosis culture filtrate proteins (Mtb-CFP), one of the most important CMI to defend TB, showed a statistically significant elevation in 2-4 months after operation when compared to the preoperative CMI in patients who were converted into AFB negative and cured in two years' follow-up, suggesting that the recovery of CMI may be one of the key factors in the successful treatment of MDR-TB. Interestingly, IL-10 response to Mtb-CFP was also elevated in 2-4 months after surgery in cured patients although both proliferative response and PBMC composition were not significantly changed. Infection with first- or second-line drugs resistant Mtb reduces the efficiency of chemotherapeutic treatment of MDR-TB to about 50%. Thus, this study suggests that chemotherapeutic treatment of MDR-TB may be more effective when combined with accompanying therapy that increases CMI, includes lung resection surgery. 相似文献
12.
Detection of Phenolic Glycolipid I of Mycobacterium leprae in Sera from Leprosy Patients before and after Start of Multidrug Therapy 下载免费PDF全文
Sang-Nae Cho Roland V. Cellona Laarni G. Villahermosa Tranquilino T. Fajardo Jr. M. Victoria F. Balagon Rodolfo M. Abalos Esterlina V. Tan Gerald P. Walsh Joo-Deuk Kim Patrick J. Brennan 《Clinical and Vaccine Immunology : CVI》2001,8(1):138-142
A total of 100 untreated new leprosy patients were recruited prospectively and examined for the presence of phenolic glycolipid I (PGL-I) antigen in their serum specimens by dot enzyme-linked immunosorbent assay (ELISA) using rabbit anti-PGL-I antiserum. The presence of circulating PGL-I antigen was closely related to the bacterial indices (BI) of the patients. The PGL-I antigen was detectable in 27 (93.1%) of 29 patients with a BI of 4.0 or above and in 15 (68.2%) of 22 patients with a BI of 3.0 to 3.9. However, none of the 37 patients with a BI of less than 1.9 had detectable PGL-I antigen by the methods used in this study. The level of PGL-I in serum declined rapidly by about 90% 1 month after the start of multidrug therapy. This study showed clearly that anti-PGL-I IgM antibodies and circulating PGL-I antigen levels reflect the bacterial loads in untreated leprosy patients. The serological parameters based on the PGL-I antigen may therefore be useful in the assessment of leprosy patients at the time of diagnosis and possibly in monitoring patients following chemotherapy. 相似文献
13.
Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B 总被引:3,自引:0,他引:3 下载免费PDF全文
In spite of its many other benefits, DNA vaccine is limited in its application by its insufficient immunogenicity. One promising approach for enhancing its immunogenicity is to maximize its expression in the immunized host. In the current study, we investigated whether codon optimization of the mycobacterial antigen Ag85B gene could enhance the expression and immunogenicity of the Ag85B DNA vaccine. We generated a synthetic humanized Ag85B (hAg85B) gene in which codon usage was optimized for expression in human cells. DNA plasmids with codon-optimized hAg85B increased the level of protein expression in vitro and in vivo. DNA vaccine with hAg85B induced stronger Th1-like and cytotoxic T-cell immune responses in BALB/c mice and generated higher protective immunity in a BALB/c mouse model of Mycobacterium tuberculosis aerosol infection than did the DNA vaccine with wild-type Ag85B. Therefore, our results suggest that codon optimization of mycobacterial antigens (e.g., Ag85B) could improve protein expression and thereby enhance the immunogenicity of DNA vaccines against M. tuberculosis. 相似文献
14.
Yun Hee Jeong Yun-Gyoung Hur Hyejon Lee Sunghyun Kim Jang-Eun Cho Jun Chang Sung Jae Shin Hyeyoung Lee Young Ae Kang Sang-Nae Cho Sang-Jun Ha 《Journal of clinical microbiology》2015,53(2):504-510
Mycobacterium tuberculosis is the major causative agent of tuberculosis (TB). The gamma interferon (IFN-γ) release assay (IGRA) has been widely used to diagnose TB by testing cell-mediated immune responses but has no capacity for distinguishing between active TB and latent TB infection (LTBI). This study aims to identify a parameter that will help to discriminate active TB and LTBI. Whole-blood samples from 33 active TB patients, 20 individuals with LTBI, and 26 non-TB controls were applied to the commercial IFN-γ release assay, QuantiFERON-TB Gold In-Tube, and plasma samples were analyzed for interleukin-2 (IL-2), IL-6, IL-8, IL-10, IL-13, tumor necrosis factor-alpha (TNF-α), IFN-γ, monokine induced by IFN-γ (MIG), interferon gamma inducible protein 10 (IP-10), interferon-inducible T cell alpha chemoattractant (I-TAC), and monocyte chemoattractant protein 1 (MCP-1) by using a commercial cytometric bead array. The Mycobacterium tuberculosis antigen-specific production of most of the assayed cytokines and chemokines was higher in the active TB than in the LTBI group. The mitogen-induced responses were lower in the active TB than in the LTBI group. When the ratio of TB-specific to mitogen-induced responses was calculated, IL-2, IL-6, IL-10, IL-13, TNF-α, IFN-γ, MIG, and IP-10 were more useful in discriminating active TB from LTBI. In particular, most patients showed higher IP-10 production to Mycobacterium tuberculosis antigens than to mitogen at the individual level, and the ratio for IP-10 was the strongest indicator of active infection versus LTBI with 93.9% sensitivity and 90% specificity. In conclusion, the ratio of the TB-specific to the mitogen-induced IP-10 responses showed the most promising accuracy for discriminating active TB versus LTBI and should be further studied to determine whether it can serve as a biomarker that might help clinicians administer appropriate treatments. 相似文献
15.
16.
Characterization of a 34-Kilodalton Protein of Mycobacterium leprae That Is Isologous to the Immunodominant 34-Kilodalton Antigen of Mycobacterium paratuberculosis 总被引:1,自引:0,他引:1 下载免费PDF全文
Fauzi S. Silbaq Sang-Nae Cho Stewart T. Cole Patrick J. Brennan 《Infection and immunity》1998,66(11):5576-5579
During DNA sequence analysis of cosmid L373 from the Mycobacterium leprae genome, an open reading frame of 1.4 kb encoding a protein with some homology to the immunodominant 34-kDa protein of Mycobacterium paratuberculosis, but lacking significant serological activity, was detected. The DNA sequence predicted a signal peptide with a modified lipoprotein consensus sequence, but the protein proved to be devoid of lipid attachment. 相似文献
17.
rpoB genotypes of Mycobacterium tuberculosis Beijing family isolates from East Asian countries 总被引:8,自引:0,他引:8 下载免费PDF全文
Qian L Abe C Lin TP Yu MC Cho SN Wang S Douglas JT 《Journal of clinical microbiology》2002,40(3):1091-1094
The 81-bp region of the rpoB gene in 66 Rif(r) Mycobacterium tuberculosis isolates from China, Japan, Korea, and Taiwan was analyzed. Twelve single-nucleotide substitutions in the rpoB gene were detected. The most prevalent mutations were at Ser-531 (52%), Asp-516 (17%), and His-526 (11%). Mutations were not found in seven (11%) of the isolates. Higher mutation rates in 50 Beijing family isolates were found than in other isolates for mutations at Asp-516 (18 and 12.5%, respectively) and His-526 (12 and 6.3%, respectively). The different rates of mutation may reflect the choice of rifamycin analogs. 相似文献
18.
Chakravorty S Kothari H Aladegbami B Cho EJ Lee JS Roh SS Kim H Kwak H Lee EG Hwang SH Banada PP Safi H Via LE Cho SN Barry CE Alland D 《Journal of clinical microbiology》2012,50(7):2194-2202
Rifampin resistance in Mycobacterium tuberculosis is largely determined by mutations in an 80-bp rifampin resistance determining region (RRDR) of the rpoB gene. We developed a rapid single-well PCR assay to identify RRDR mutations. The assay uses sloppy molecular beacons to probe an asymmetric PCR of the M. tuberculosis RRDR by melting temperature (T(m)) analysis. A three-point T(m) code is generated which distinguishes wild-type from mutant RRDR DNA sequences in approximately 2 h. The assay was validated on synthetic oligonucleotide targets containing the 44 most common RRDR mutations. It was then tested on a panel of DNA extracted from 589 geographically diverse clinical M. tuberculosis cultures, including isolates with wild-type RRDR sequences and 25 different RRDR mutations. The assay detected 236/236 RRDR mutant sequences as mutant (sensitivity, 100%; 95% confidence interval [CI], 98 to 100%) and 353/353 RRDR wild-type sequences as wild type (specificity, 100%; 95% CI, 98.7 to 100%). The assay identified 222/225 rifampin-resistant isolates as rifampin resistant (sensitivity, 98.7%; 95% CI, 95.8 to 99.6%) and 335/336 rifampin-susceptible isolates as rifampin susceptible (specificity, 99.7%; 95% CI, 95.8 to 99.6%). All mutations were either individually identified or clustered into small mutation groups using the triple T(m) code. The assay accurately identified mixed (heteroresistant) samples and was shown analytically to detect RRDR mutations when present in at least 40% of the total M. tuberculosis DNA. This was at least as accurate as Sanger DNA sequencing. The assay was easy to use and well suited for high-throughput applications. This new sloppy molecular beacon assay should greatly simplify rifampin resistance testing in clinical laboratories. 相似文献
19.
20.