首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1421篇
  免费   100篇
  国内免费   3篇
耳鼻咽喉   46篇
儿科学   44篇
妇产科学   10篇
基础医学   135篇
口腔科学   15篇
临床医学   122篇
内科学   398篇
皮肤病学   48篇
神经病学   51篇
特种医学   40篇
外国民族医学   1篇
外科学   248篇
综合类   29篇
一般理论   8篇
预防医学   103篇
眼科学   20篇
药学   118篇
中国医学   10篇
肿瘤学   78篇
  2023年   12篇
  2022年   31篇
  2021年   55篇
  2020年   33篇
  2019年   51篇
  2018年   40篇
  2017年   48篇
  2016年   46篇
  2015年   31篇
  2014年   56篇
  2013年   65篇
  2012年   88篇
  2011年   144篇
  2010年   63篇
  2009年   77篇
  2008年   98篇
  2007年   79篇
  2006年   97篇
  2005年   71篇
  2004年   72篇
  2003年   51篇
  2002年   44篇
  2001年   15篇
  2000年   20篇
  1999年   14篇
  1998年   7篇
  1997年   4篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   6篇
  1978年   3篇
  1976年   4篇
  1974年   3篇
  1969年   5篇
  1968年   4篇
  1967年   2篇
  1966年   3篇
  1965年   2篇
  1964年   3篇
排序方式: 共有1524条查询结果,搜索用时 0 毫秒
41.
42.
43.
Clinical Rheumatology - To determine the role of Interleukin-34 (IL-34) in the pathogenesis of juvenile systemic lupus erythematosus (J-SLE), by exploring the relationship between IL-34...  相似文献   
44.
45.
The nervous, endocrine, and immune systems interact to adapt to infection, inflammation, and tissue injury. Neural control is mediated in several ways, one of them being through the neuroendocrine regulation of the secretion of hypothalamic and pituitary hormones. The hormonal effects on the immune system range from the impact of steroidal hormones, which exhibit inhibitory effects over immune functions, to growth hormone, prolactin and neurohypophyseal hormones, known to stimulate and modulate humoral and cellular aspects of the immune system. This review will discuss the mechanisms behind the immunomodulatory role of the neuroendocrine system, including the critically important feedback loops required to maintain balance for these bidirectional interactions and alterations that occur with age.  相似文献   
46.
Avian influenza due to highly pathogenic avian influenza (HPAIV) H5N1 virus is not a food-borne illness but a serious panzootic disease with the potential to be pandemic. In this study, broiler chickens were vaccinated with commercial H5N1 or H5N2 inactivated vaccines prior to being challenged with an HPAIV H5N1 (clade 2.2.1 classic) virus. Challenged and non-challenged vaccinated chickens were kept together, and unvaccinated chickens served as contact groups. Post-challenge samples from skin and edible internal organs were collected from dead and sacrificed (after a 14-day observation period) birds and tested using qRT-PCR for virus detection and quantification. H5N1 vaccine protected chickens against morbidity, mortality and transmission. Virus RNA was not detected in the meat or edible organs of chickens vaccinated with H5N1 vaccine. Conversely, H5N2 vaccine did not confer clinical protection, and a significant virus load was detected in the meat and internal organs. Phylogenetic analysis showed that the H5N1 virus vaccine and challenge virus strains are closely related. The results of the present study strongly suggest a need for proper selection of vaccines and their routine evaluation against newly emergent field viruses. These actions will help to reduce human exposure to HPAIV H5N1 virus from both infected live birds and slaughtered poultry. In addition, rigorous preventive measures should be put in place in order to minimize the public-health risks of avian influenza at the human-animal interface.  相似文献   
47.
We aimed at establishing hybridoma cells secreting monoclonal antibodies (mAbs) against E1 synthetic peptide of HCV. BALB/c mice were immunized with HCV E1-synthetic peptide (GHRMAWDMM) and its spleenocytes were fused with the P3NS1 myeloma cell line. Two highly reactive and specific mAbs (10C7 IgG2b mAb, and 10B2 IgG1 mAb) were generated. The target HCV E1 antigen was identified at approximately 38 kDa in serum of infected individuals. A newly developed ELISA detected the target antigen in 90% of sera from HCV RNA infected individuals with a specificity of 84%. So, the generated mAbs may provide promising probes for serodiagnosis of HCV infection.  相似文献   
48.
A case of large subchorionic hematoma complicated by intrauterine growth retardation and oligohydramnios diagnosed at 32 weeks' gestation with twin pregnancy after ICSI is reported below. The patient was on clexane injection during pregnancy for mitral valve replacement. She was managed with tocolysis using progesterone therapy and antibiotic with followup until delivery. At 34 weeks, a male baby weighing was delivered without complication by caesarean section because of single fetal demise of twin pregnancy.  相似文献   
49.
Colony-stimulating factor (CSF)-1 controls the survival, proliferation, and differentiation of macrophages, which are recognized as scavengers and agents of the innate and the acquired immune systems. Because of their plasticity, macrophages are endowed with many other essential roles during development and tissue homeostasis. We present evidence that CSF-1 plays an important trophic role in postnatal organ growth and kidney repair. Notably, the injection of CSF-1 postnatally enhanced kidney weight and volume and was associated with increased numbers of tissue macrophages. Moreover, CSF-1 promotes postnatal renal repair in mice after ischemia-reperfusion injury by recruiting and influencing macrophages toward a reparative state. CSF-1 treatment rapidly accelerated renal repair with tubular epithelial cell replacement, attenuation of interstitial fibrosis, and functional recovery. Analysis of macrophages from CSF-1-treated kidneys showed increased expression of insulin-like growth factor-1 and anti-inflammatory genes that are known CSF-1 targets. Taken together, these data suggest that CSF-1 is important in kidney growth and the promotion of endogenous repair and resolution of inflammatory injury.Macrophages are versatile cells that have been long recognized as immune effectors where their recruitment to sites of injury is a fundamental feature of inflammation. Although their role in host defense has been well documented, macrophages and their precursors are also important during embryogenesis, normal tissue maintenance, and postnatal organ repair.1,2 Almost all developing organs contain a population of resident monocytes that infiltrate very early during organogenesis and persist throughout adult life.3–6 In addition to their phagocytic capabilities during tissue remodeling-associated apoptosis,5,7 fetal macrophages have many trophic effects that promote tissue and organ growth.6,8,9Colony-stimulating factor (CSF)-1 controls the differentiation, proliferation, and survival of macrophages by binding to a high-affinity cell-surface tyrosine kinase receptor (CSF-1R), encoded by the c-fms proto-oncogene that is expressed on macrophages and their progenitors.6 CSF-1 is critical for both adult and embryonic macrophage development. This is manifested by multiple organ growth deficiencies observed in osteopetrotic (Csf1op/Csf1op) mice that have a spontaneous mutation in the csf-1 gene. These mice show growth restriction and developmental abnormalities of the bones, brain, and reproductive and endocrine organs,10–13 a phenotype that can be rescued by injection of exogenous CSF-1 or insertion of a csf-1 transgene.14–16In adult organs, there is considerable heterogeneity of monocytes and macrophages with distinct subsets defined by phenotype, function, and the differential expression of cell surface markers.17–19 Subpopulations of macrophages directly contribute to wound healing and tissue repair, supporting the concept that some macrophage phenotypes can promote organ regeneration after a pro-inflammatory state of injury.20 The concept of macrophage polarization states has emerged; the M1 “classically activated” pro-inflammatory cell type apparently opposed by an M2 “alternatively activated” immune regulatory macrophage.18 In general, these two states are thought to be analogous to the opposing T helper 1 and T helper 2 immune responses, although in both cases this model is probably too simplistic. Functionally, it is more likely that distinct subpopulations of macrophages may exist in the same tissue and play critical roles in both the injury and recovery phases of inflammatory scarring.20Our previous study provided evidence that the addition of CSF-1 to a developing murine kidney promotes a growth and differentiation response that is accompanied by increased numbers of macrophages.3 Furthermore, with the use of expression profiling we demonstrated that fetal kidney, lung, and brain macrophages share a characteristic gene expression profile that includes the production of factors important in the suppression of inflammation and the promotion of proliferation.3 Embryonic macrophages appear to play a positive trophic role that may have parallel reparative functions in many adult tissues undergoing repair and cellular replacement.1,20 A number of studies have suggested that infiltrating macrophages along with the trophic factors they release participate in tissue repair of the kidney,20–22 brain,23 skin,24,25 lung,26 liver,27 heart,28 gastrointestinal tract,29,30 and skeletal muscle.31,32 Indeed, the pleiotrophic roles for CSF-1 in reproduction, development of multiple organ systems, and maternal-fetal interactions during pregnancy by macrophage-mediated processes have also been well defined.2,33,34To determine the physiological relevance of CSF-1 as a component of the mammalian growth regulatory axis, CSF-1 was administered to neonatal mice. We report that CSF-1 administration to newborn mice increased body weight and kidney weight and volume and was associated with increased numbers of macrophages. Our results also establish that CSF-1 injection into mice after ischemia-reperfusion (IR) injury promoted endogenous repair with characteristic rapid re-epithelialization of the damaged tubular epithelium, leading to functional recovery. Flow cytometric and gene expression analyses were used to delineate the macrophage profile present in the kidneys during the early and resolution phase of IR injury with and without CSF-1 therapy. We thus provide evidence that CSF-1 recruits macrophages to the reparative site and influences their phenotype, partly through an insulin-like growth factor (IGF)-1 signaling response. Therefore, macrophages under the stimulus of CSF-1 in an acute setting of renal disease markedly accelerate renal cell replacement and tissue remodeling while attenuating downstream interstitial extracellular matrix accumulation.  相似文献   
50.
Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号