首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   30篇
  国内免费   1篇
耳鼻咽喉   2篇
儿科学   9篇
妇产科学   2篇
基础医学   67篇
口腔科学   5篇
临床医学   33篇
内科学   79篇
皮肤病学   7篇
神经病学   30篇
特种医学   7篇
外科学   66篇
综合类   3篇
预防医学   48篇
眼科学   3篇
药学   46篇
肿瘤学   20篇
  2024年   2篇
  2023年   9篇
  2022年   27篇
  2021年   42篇
  2020年   20篇
  2019年   16篇
  2018年   18篇
  2017年   9篇
  2016年   10篇
  2015年   13篇
  2014年   17篇
  2013年   24篇
  2012年   38篇
  2011年   32篇
  2010年   16篇
  2009年   20篇
  2008年   22篇
  2007年   16篇
  2006年   22篇
  2005年   11篇
  2004年   17篇
  2003年   10篇
  2002年   8篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有427条查询结果,搜索用时 640 毫秒
61.
62.
63.
64.
Fibroblast growth factor‐23 (FGF23) is a bone‐derived hormone regulating vitamin D hormone production and renal handling of minerals by signaling through an FGF receptor/αKlotho (Klotho) receptor complex. Whether Klotho has FGF23‐independent effects on mineral homeostasis is a controversial issue. Here, we aimed to shed more light on this controversy by comparing male and female triple knockout mice with simultaneous deficiency in Fgf23 and Klotho and a nonfunctioning vitamin D receptor (VDR) (Fgf23/Klotho/VDR) with double (Fgf23/VDR, Klotho/VDR, and Fgf23/Klotho) and single Fgf23, Klotho, and VDR mutants. As expected, 4‐week‐old Fgf23, Klotho, and Fgf23/Klotho knockout mice were hypercalcemic and hyperphosphatemic, whereas VDR, Fgf23/VDR, and Klotho/VDR mice on rescue diet were normocalcemic and normophosphatemic. Serum levels of calcium, phosphate, and sodium did not differ between 4‐week‐old triple Fgf23/Klotho/VDR and double Fgf23/VDR or Klotho/VDR knockout mice. Notably, 3‐month‐old Fgf23/Klotho/VDR triple knockout mice were indistinguishable from double Fgf23/VDR and Klotho/VDR compound mutants in terms of serum calcium, serum phosphate, serum sodium, and serum PTH, as well as urinary calcium and sodium excretion. Protein expression analysis revealed increased membrane abundance of sodium‐phosphate co‐transporter 2a (NaPi‐2a), and decreased expression of sodium‐chloride co‐transporter (NCC) and transient receptor potential cation channel subfamily V member 5 (TRPV5) in Fgf23/Klotho/VDR, Fgf23/VDR, and Klotho/VDR mice, relative to wild‐type and VDR mice, but no differences between triple and double knockouts. Further, ex vivo treatment of live kidney slices isolated from wild‐type and Klotho/VDR mice with soluble Klotho did not induce changes in intracellular phosphate, calcium or sodium accumulation assessed by two‐photon microscopy. In conclusion, our data suggest that the main physiological function of Klotho for mineral homeostasis in vivo is its role as co‐receptor mediating Fgf23 action. © 2017 American Society for Bone and Mineral Research.  相似文献   
65.
66.
The early identification of susceptibility to adverse cardiovascular outcomes and risk stratification amongst asymptomatic individuals, as well as amongst those with overt disease continues to be one of the major priorities of clinically-orientated research in the field of atherothrombosis. Available data from epidemiological studies indicate that traditional risk factors do not fully explain the predisposition to cardiovascular disease, its dynamics in different population groups and treatment responses. The pressing need for the development and clinical implementation of new markers of atherothrombotic disease has fuelled rapidly expanding research into cardiac biomarkers. This review outlines the main principles of biomarker qualification that have entered clinical practice, as well as an overview of the development of targeted biomarkers across the cardiovascular "continuum". We discuss in detail the evidence from epidemiological and clinical studies advocating the potential clinical use of the most promising candidate plasma biomarkers (more specifically, C-reactive protein, coagulation and inflammatory mediators and natriuretic peptides). Such an application of biomarkers to aid clinical risk assessment would be important in our efforts to improve risk stratification of subjects at risk of cardiovascular events.  相似文献   
67.
Pharmacogenomics of metabolic effects of rosiglitazone   总被引:1,自引:0,他引:1  
INTRODUCTION: Thiazolidinediones are increasingly used drugs for the treatment of Type 2 diabetes. The individual response to thiazolidinedione therapy, ranging from the variable degree of metabolic improvement to harmful side-effects, is empirical, yet the underlying mechanisms remain elusive. In order to assess the pharmacogenomic component of thiazolidinediones' metabolic action, we compared the effect of rosiglitazone in two genetically defined models of metabolic syndrome, polydactylous (PD) and BN.SHR4 inbred rat strains, with their insulin-sensitive, normolipidemic counterpart, the Brown Norway (BN) rat. MATERIALS & METHODS: 5-month-old male rats were fed a high-fat diet for 4 weeks, and the experimental groups received rosiglitazone (0.4 mg/100 g body weight) during the last 2 weeks of high-fat diet feeding. We assessed metabolic and morphometric profiles, oxidative stress parameters and gene expression in white adipose tissue. RESULTS: In many followed parameters, we observed genetic background-specific effects of rosiglitazone administration. The mass and the sensitivity of visceral adipose tissue to insulin-stimulated lipogenesis increased with rosiglitazone treatment only in PD, correlating with a PD-specific significant increase in expression of prostaglandin D2 synthase. The glucose tolerance was enhanced in all strains, although fasting plasma glucose was increased by rosiglitazone in BN and BN.SHR4. Among the markers of lipid peroxidation, we observed the rosiglitazone-driven increase of plasma-conjugated dienes only in BN.SHR4. The genes with genotype-specific expression change included ADAM metallopeptidase domain 7, aquaporin 9, carnitine palmitoyltransferase 1B, caveolin 1, catechol-O-methyl transferase, leptin and prostaglandin D2 synthase 2. CONCLUSION: Rosiglitazone's effects on lipid deposition and insulin sensitivity of peripheral tissues are largely dependent on the genetic background it acts upon.  相似文献   
68.
Sepsis remains the most common cause of death in intensive care units in the USA, with a current estimate of at least 750,000 cases per year, and 215,000 deaths annually. Despite extensive research still we do not quite understand the cellular and molecular mechanisms that are involved in triggering and propagation of septic injury. Endotoxin (lipopolysaccharide from Gram-negative bacteria, or LPS) has been implicated as a major cause of this syndrome. Inflammatory shock as a consequence of LPS release remains a serious clinical concern. In humans, inflammatory responses to LPS result in the release of cytokines and other cell mediators from monocytes and macrophages, which can cause fever, shock, organ failure and death. A number of different approaches have been investigated to try to treat and/or prevent the septic shock associated with infections caused by Gram-negative bacteria, including blockage of one or more of the cytokines induced by LPS. Recently several novel amphipathic compounds have been developed as direct LPS antagonists at the LPS receptor, TLR4. This review article will outline the current knowledge on the TLR4-LPS synthesis and discuss the signaling, in vitro pre-clinical and in vivo clinical evaluation of TLR4 antagonists and their potential use in sepsis and a variety of diseases such as atherosclerosis as well as hepatic and renal malfunction.  相似文献   
69.
Purpose Eritoran (E5564) is a glycophospholipid that acts as a toll-like receptor 4 (TLR4) antagonist that is being tested as a treatment for severe sepsis and septic shock. In the blood, eritoran binds to plasma lipoproteins altering its pharmacokinetic and pharmacodynamic (PD) effects in vivo. The purpose of this study was to determine the influence of changes in plasma cholesterol and triglyceride concentrations on the plasma pharmacokinetics and ex vivo activity of eritoran following single intravenous bolus dosing of eritoran to healthy female rabbits fed either a regular chow diet or a cholesterol-enriched diet. This was done with eritoran administered as stable micelle formulations of mean hydrodynamic diameters of 8 or 27 nm). Methods Female New Zealand White rabbits were fed a standard diet for 7 days and then randomly assigned either a regular chow diet [regular-diet (n = 9)] or a cholesterol-enriched diet [cholesterol-diet (n = 12)] for an additional 7 days. Following feeding of these diets a single intravenous bolus dose of eritoran (0.5 mg/kg) formulated into either “small micelles” (8 nm in diameter) or “large micelles” (27 nm in diameter) was administered to regular-fed and cholesterol-fed rabbits. Serial blood samples were obtained prior to eritoran administration and at the following times post injection: 0.083 (5 min), 1, 2, 4, 8, 10, 24, 48 and 72 h. Plasma was analyzed for eritoran concentrations using LC/MS/MS. Total plasma cholesterol (TC) and triglyceride (TG) levels were quantified using enzymatic kits. Plasma eritoran pharmacokinetic (PK) parameters were estimated by non-compartmental analysis using the WinNonlin nonlinear estimation program. To analyze PD activity, whole blood obtained at 0.083 (5 min), 2, 24, 48 and 72 h following eritoran administration was assessed for ex vivo activity by measuring the ability of 1 and 10 ng/ml LPS to elicit TNF-α release. Results Total plasma cholesterol and triglyceride levels were significantly higher in cholesterol-fed rabbits compared to the rabbits fed a regular chow diet. Diet had no effect on the estimated plasma PK parameters. However, PD activity of both small and large micelle eritoran as measured by an ex vivo challenge dose of 1 ng/ml LPS was reduced in blood of cholesterol-fed rabbits compared to normal-fed rabbits. Comparison of PK parameters for small and large micelles indicated that small micelles had increased AUC0–72 h, decreased plasma clearance and increased initial concentration (measured at 5 min post administration) compared to the large micelle formulation. Consistent with this observation, eritoran formulated into small micelles had significantly greater ex vivo activity than large micelles and was independent of TC and TG concentrations. Conclusions These findings suggest that plasma pharmacokinetics and activity of eritoran maybe influenced by eritoran micelle size and plasma TC and TG concentrations.  相似文献   
70.
Adequate plasma, cellular, and tissue vitamin C concentrations are required for maintaining optimal health through suppression of oxidative stress and optimizing functions of certain enzymes that require vitamin C as a cofactor. Polymorphisms in the vitamin C transporter genes, compromising genes encoding sodium-dependent ascorbate transport proteins, and also genes encoding facilitative transporters of dehydroascorbic acid, are associated with plasma and tissue cellular ascorbate status and hence cellular redox balance. This review summarizes our current knowledge of the links between variations in vitamin C transporter genes and common chronic diseases. We conclude that emerging genetic knowledge has a good likelihood of defining future personalized dietary recommendations and interventions; however, further validations through biological studies as well as controlled dietary trials are required to identify predictive and actionable genetic biomarkers. We further advocate the need to consider genetic variation of vitamin C transporters in future clinical and epidemiologic studies on common complex diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号