首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   27篇
  国内免费   9篇
儿科学   21篇
妇产科学   7篇
基础医学   37篇
口腔科学   14篇
临床医学   67篇
内科学   119篇
皮肤病学   9篇
神经病学   14篇
特种医学   99篇
外科学   34篇
综合类   32篇
预防医学   14篇
眼科学   8篇
药学   8篇
肿瘤学   20篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   12篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   15篇
  2010年   21篇
  2009年   19篇
  2008年   9篇
  2007年   17篇
  2006年   16篇
  2005年   3篇
  2004年   13篇
  2003年   3篇
  2002年   2篇
  2001年   10篇
  2000年   2篇
  1999年   5篇
  1998年   27篇
  1997年   25篇
  1996年   36篇
  1995年   19篇
  1994年   14篇
  1993年   20篇
  1992年   4篇
  1991年   8篇
  1990年   9篇
  1989年   13篇
  1988年   17篇
  1987年   13篇
  1986年   14篇
  1985年   10篇
  1984年   9篇
  1983年   12篇
  1982年   7篇
  1981年   13篇
  1980年   7篇
  1979年   1篇
  1978年   5篇
  1977年   7篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
  1972年   1篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
121.
Red blood cell (RBC) membranes from patients with the thalassemic and sickle hemoglobinopathies carry abnormal deposits of iron presumed to mediate a variety of oxidative-induced membrane dysfunctions. We hypothesized that the oral iron chelator deferiprone (L1), which has an enhanced capacity to permeate cell membranes, might be useful in chelating these pathologic iron deposits from intact RBCs. We tested this hypothesis in vitro by incubating L1 with RBCs from 15 patients with thalassemia intermedia and 6 patients with sickle cell anemia. We found that removal of RBC membrane free iron by L1 increased both as a function of time of incubation and L1 concentration. Thus, increasing the time of incubation of thalassemic RBCs with 0.5 mmol/L L1 from 0.5 to 6 hours, enhanced removal of their membrane free iron from 18% +/- 9% to 96% +/- 4%. Dose-response studies showed that incubating thalassemic RBC for 2 hours with L1 concentrations ranging from 0.125 to 0.5 mmol/L resulted in removal of membrane free iron from 28% +/- 15% to 68% +/- 11%. Parallel studies with sickle RBCs showed a similar pattern in time and dose responses. Deferoxamine (DFO), on the other hand, was ineffective in chelating membrane free iron from either thalassemic or sickle RBCs regardless of dose (maximum, 0.333 mmol/L) or time of incubation (maximum, 24 hours). In vivo efficacy of L1 was shown in six thalassemic patients whose RBC membrane free iron decreased by 50% +/- 29% following a 2-week course of L1 at a daily dose of 25 mg/kg. As the dose of L1 was increased to 50 mg/kg/d (n = 5), and then to 75 mg/kg/d (n = 4), 67% +/- 14% and 79% +/- 11%, respectively, of their RBC membrane free iron was removed. L1 therapy-- both in vitro and in vivo--also significantly attenuated the malondialdehyde response of thalassemic RBC membranes to in vitro stimulation with peroxide. Remarkably, the heme content of RBC membranes from L1-treated thalassemic patients decreased by 28% +/- 10% during the 3-month study period. These results indicate that L1 can remove pathologic deposits of chelatable iron from thalassemic and sickle RBC membranes, a therapeutic potential not shared by DFO. Furthermore, membrane defects possibly mediated by catalytic iron, such as lipid peroxidation and hemichrome formation, may also be alleviated, at least in part, by L1.  相似文献   
122.
McEver  RP; Baenziger  JU; Majerus  PW 《Blood》1982,59(1):80-85
We have previously demonstrated the isolation of platelet membrane glycoprotein IIb-IIIa by affinity chromatography with a specific monoclonal antibody. We have now separated the polypeptide subunits IIb and IIIa of the isolated glycoprotein by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis and have compared their structural features. Both IIb and IIIa contain approximately 15% carbohydrate, but IIIa contains a larger percentage of mannose residues, suggesting the presence of high mannose as well as complex N- linked oligosaccharide chains. The amino acid compositions are sufficiently similar to imply areas of sequence homology between the two subunits. To examine further the relationship between the subunits, we digested a mixture of 125I-IIb and 131I-IIIa with trypsin and then separated the radiolabeled peptides by high performance liquid chromatography. The resultant peptide maps of IIb and IIIa are completely different. This indicates that neither subunit is derived from the other and suggests that polypeptides IIb and IIIa are products of separate genes.  相似文献   
123.
Champlin  R; Ho  W; Arenson  E; Gale  RP 《Blood》1982,60(4):1038-1041
Eight patients with Ph1-positive chronic myelogenous leukemia (CML) in chronic or accelerated phase received high-dose cyclophosphamide, total body irradiation, and bone marrow transplantation from an HLA-identical sibling donor. All patients had prompt engraftment and achieved complete hematologic remission. Six patients remain alive and in continuous remission with a normal bone marrow karyotype 3-20+ mo posttransplant. One patient died from cytomegalovirus interstitial pneumonitis. Only one patient who was transplanted in accelerated phase relapsed 6.5 mo posttransplant and died in blast crisis. High-dose combined modality therapy is capable of producing sustained complete remissions in patients with CML treated during chronic or accelerated phase.  相似文献   
124.
Vahdat  L; Wong  ET; Wile  MJ; Rosenblum  M; Foley  KM; Warrell  RP Jr 《Blood》1994,84(10):3429-3434
Despite expectations that 2-chlorodeoxyadenosine (2-CdA) would prove active primarily in lymphoproliferative diseases, early reports suggested unexpected high activity of this drug in heavily pretreated children with acute myeloblastic leukemia (AML) at a maximally tolerated dose of 8.9 mg/m2/day for 5 days. In view of these findings, we conducted an escalating dose trial of 2-CdA in adult patients with relapsed or resistant AML. Thirty-six patients who had received extensive prior therapy were treated at 9 dose levels of 2-CdA at daily doses ranging from 5 to 21 mg/m2 for 5 days. 2-CdA eliminated leukemic blasts from the peripheral blood in 32 of 36 cases; however, bone marrow hypoplasia was seen only at daily dose levels > or = 15 mg/m2. We observed a total of 3 complete remissions: 1 at the 15 mg/m2/d dose level and 2 at the 21 mg/m2/d dose level; these responses persisted for 3, 2, and 3 months, respectively. Although prolonged myelosuppression would have been dose-limiting at 21 mg/m2/d for 5 days, the most important adverse effect was the development of a sensorimotor peripheral neuropathy. This reaction, whose onset was substantially delayed after completion of drug treatment, was observed in 2 of 5 patients at the 19 mg/m2/d level and in 4 of 4 evaluable patients at the 21 mg/m2/d level. Pathologically, this process was characterized by axonal degeneration and secondary demyelination. Other side effects included reactivation of a posttransplant Epstein-Barr virus-related lymphoma in 1 patient and tumor lysis syndrome. We conclude that the maximally tolerable dose of 2-CdA in adult patients (17 mg/m2/d for 5 days) in approximately twofold in excess of that previously reported in children and that the limiting toxic effect is a degenerative neuropathic disorder. We confirm that this drug has definite activity in AML, but the magnitude of this effect needs to be determined in larger numbers of patients who have received less extensive therapy. This agent deserves further evaluation in patients with both AML and acute lymphoblastic leukemia at these higher doses and perhaps as part of a preparative regimen for patients undergoing bone marrow transplantation.  相似文献   
125.
Secretory cells undergoing release and recovery events related to constitutive and/or stimulus-initiated secretion might be expected to undergo distinctive changes in morphology as well. We studied the release and recovery events of human mast cell secretion stimulated by antibody to immunoglobulin E. We used enzymatically digested mast cells from human lung specimens further purified by countercurrent centrifugation elutriation. Release kinetics were like those reported for isolated human lung mast cells. In two complete kinetic experiments we restudied these early release patterns (0 to 30 minutes). Mast cells, either stimulated or controls, were then cultured and sampled for electronmicroscopic studies at periodic intervals (3 to 48 hours). We describe events of the late recovery period here, although some overlap with processes seen in early recovery samples occurred. Mast cells that released nearly all their cytoplasmic granules and exteriorized the containers, eg, granule-channel membranes, underwent progressive enlargement of Golgi structures and development of numerous small cytoplasmic vesicles and small, membrane-bound granules filled with particulate and dense content. Ultimately, new mature cytoplasmic granules of all substructural patterns occurred. Nuclear blast changes and expansion of cytoplasmic mass accompanied this period of new granule synthesis. Mixed recovery patterns were present in individual cells. These represented the morphological expression of a variety of recovery events. Thus, some cells showed a combination of channel recovery and remodeling to form new granule containers within which condensation of content produced crystalline patterns, as well as synthesis of new granules, as described here. This morphological versatility resulted in multiple mast cell morphological phenotypes during these release and recovery processes.  相似文献   
126.
Shalev  O; Hebbel  RP 《Blood》1996,87(9):3948-3952
Abnormal deposition of hemichrome on the inner aspect of the sickle red cell membrane promotes premature cell demise. The steps proximate to hemichrome formation in these cells are poorly understood. To test the hypothesis that the pathologic deposits of free ferric iron located on the inner aspect of sickle cell membranes would be redox active and promote oxidation of soluble oxyhemoglobin, we incubated native versus iron-stripped sickle or normal ghost membranes with oxyhemoglobin S. We found that sickle membranes exerted an exaggerated effect on methemoglobin formation in solution, an effect completely accounted for by their abnormal content of free iron. This ability of sickle membranes to promote hemoglobin oxidation was not diminished by catalase or by presence of a high-affinity, iron-inactivating chelator that is unable to remove membrane iron. Examination of those membranes likewise revealed that their free iron content promoted deposition of additional heme-protein. These results establish that the potential redox couple formed by membrane-associated ferric iron and cytoplasmic oxyhemoglobin is promotive of hemoglobin oxidation and deposition of hemichrome on the membrane. This predicts that removal of pathologic membrane iron might help prevent the detrimental formation of methemoglobin and hemichrome in vivo, insofar as this is accelerated by transition metal.  相似文献   
127.
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号