首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9075篇
  免费   854篇
  国内免费   67篇
耳鼻咽喉   80篇
儿科学   220篇
妇产科学   169篇
基础医学   1397篇
口腔科学   184篇
临床医学   993篇
内科学   2119篇
皮肤病学   119篇
神经病学   744篇
特种医学   431篇
外科学   1200篇
综合类   164篇
一般理论   7篇
预防医学   874篇
眼科学   88篇
药学   667篇
中国医学   5篇
肿瘤学   535篇
  2021年   125篇
  2019年   112篇
  2018年   119篇
  2016年   77篇
  2015年   121篇
  2014年   163篇
  2013年   226篇
  2012年   328篇
  2011年   395篇
  2010年   205篇
  2009年   198篇
  2008年   322篇
  2007年   327篇
  2006年   324篇
  2005年   353篇
  2004年   309篇
  2003年   302篇
  2002年   272篇
  2001年   305篇
  2000年   283篇
  1999年   268篇
  1998年   172篇
  1997年   119篇
  1996年   137篇
  1995年   109篇
  1994年   131篇
  1993年   101篇
  1992年   236篇
  1991年   223篇
  1990年   224篇
  1989年   218篇
  1988年   218篇
  1987年   211篇
  1986年   224篇
  1985年   199篇
  1984年   152篇
  1983年   163篇
  1982年   109篇
  1981年   106篇
  1980年   84篇
  1979年   145篇
  1978年   137篇
  1977年   109篇
  1976年   114篇
  1975年   104篇
  1974年   118篇
  1973年   107篇
  1970年   79篇
  1969年   74篇
  1968年   73篇
排序方式: 共有9996条查询结果,搜索用时 15 毫秒
41.
The contributions of cell-cell interactions to the establishment of specific patterns of innervation within target brain regions are not known. To provide an experimental analysis of the regulation of afferent axonal growth, we have developed an in vitro assay system, based on the developing mouse cerebellum, in which afferent axons from a brainstem source of mossy fiber afferents, the basilar pontine nuclei, were cocultured with astroglia or granule neurons purified from the cerebellum. In the absence of cells from the cerebellum, pontine explants produced axons that fasciculated and extended rapidly on a culture surface treated with poly-lysine or laminin. When pontine neurites grew onto cerebellar astroglial cells, outgrowth was more abundant than on substrates alone, suggesting that glial cells provide a positive signal for axon extension. Time-lapse video microscopy indicated that the rate of neurite extension increased from less than 50 microns/hr to more than 100 microns/hr when axonal growth cones moved from the culture substratum onto an astroglial-cell surface. Acceleration of neurite extension was also observed as pontine neurites grew onto other pontine neurites. By contrast, when pontine neurites grew on granule neurons, the appropriate targets of mossy fibers, the length of pontine neurites was greatly reduced. As growing axons terminated on granule neurons, the target cells appeared to provide a "stop-growing signal" for axon extension. The length of pontine neurites decreased with increasing granule neuron density. Two lines of evidence suggested that the stop signal was contact mediated. First, video microscopy showed that pontine growth cones stopped extending after contacting a granule neuron. Second, the length of afferent axons was not reduced when pontine neurites grew at a distance from granule neurons. Competition experiments where both astroglia and granule neurons were plated together suggested that the growth arrest signal provided by granule neurons could override the growth-promoting signal provided by astroglial cells. These results suggest that specific cell-cell interactions regulate the growth of pontine afferent axons within their cerebellar target, with axoaxonal and axoglial interactions promoting axon extension and axon-target cell interactions interrupting axon extension.  相似文献   
42.
Future progress in neuromuscular prostheses will depend on developing techniques for stimulating paralyzed muscle, especially utilizing neuromuscular stimulation. We have found nonlinear force versus stimulus amplitude characteristic (recruitment) curves in the gastrocnemius-soleus-plantaris muscle group of the cat in response to stimulation of the tibial nerve near the muscle entry point. Such response characteristics are undesirable in neuromuscular control systems. Nonlinear recruitment curves usually consisted of two regions in which force increased linearly with stimulus amplitude, separated by a "plateau" region in which force was relatively constant. The two linear regions were associated with activation of separate neuromuscular compartments (lateral or medial gastrocnemius, plantaris, soleus, or subdivisions of those muscles). When the stimulated myoelectric responses from these compartments were plotted versus stimulus amplitude, the region of recruitment between threshold and saturation often did not appreciably overlap for different compartments, suggesting that the axons innervating those compartments were physically segregated within the nerve from axons innervating other compartments. Correlation coefficients between force and stimulated myoelectric response were very high (up to R2 = 0.99) when using a composite curve produced by averaging myoelectric response curves recorded from each of the active compartments. By dividing the tibial nerve into its component bundles or fascicles and stimulating each in turn, it was possible to show that individual bundles innervate non-overlapping groups of muscle compartments, and that recruitment of the nerve bundles over different threshold ranges could account for the nonlinear force/stimulus response curves initially observed. The presence of separate innervation of muscles or compartments by fascicles should be an important factor in designing functional neuromuscular stimulation (FNS) systems.  相似文献   
43.
The indirect fluorescent antibody test was used to detect antibodies to Trichomonas vaginalis in 200 antenatal patients. A total of 104 (52%) gave a positive reaction with antigen prepared from cultures of trichomonas isolated from seven of the patients. Antitrichomonal antibody was detected at a 1/4 dilution in 90% of patients with proven trichomoniasis, while the highest dilution at which antibody was detected was 1/32. IgG rather than IgM appeared to be the antibody class involved. Of those patients with no demonstrable trichomonal infection, 17% gave positive reactions at 1/4 dilution, while 64% had no demonstrable antibody. One of 30 children under 11 years of age gave a positive reaction.  相似文献   
44.
An immunoperoxidase staining technique was used for detecting three major iron-binding proteins (transferrin, ferritin, and lactoferrin) in routine histological paraffin sections of human tissue. Transferrin was found mainly in hepatocytes, a variety of epithelial and myoepithelial cells, renal tubular cells, and histiocytes. Ferritin was most readily found in histiocytes and liver cells, with weaker reactions seen in epithelial cells. Lactoferrin was found in lactating breast tissue, bronchial glands, polymorphs, and gastric and duodenal epithelial cells. The technique is potentially valuable for investigating abnormal iron states.  相似文献   
45.
Labial salivary gland biopsy in Sjögren''s disease   总被引:1,自引:0,他引:1       下载免费PDF全文
A labial biopsy technique is described and was used to study 40 patients with connective tissue disease and 60 postmortem subjects. More than one focus of lymphocytes per 4 sq mm of minor salivary tissue was found to be a consistent finding in patients with Sjögren''s disease. The labial biopsy is shown to be a further valuable investigative procedure in such patients.  相似文献   
46.
47.
The brightness of a brief flash of light is reduced by the suitable presentation of a second flash in an adjacent region of the visual field. This making effect (metacontrast) can be induced dichoptically, that is with the test flash presented to one eye and the masking flash to the other. By a suitable choice of wavelengths and conditioning field, the test flash may be arranged to effectively stimulate only rod receptors and the masking flash only cone receptor. A dichoptic masking effect is still obtained.  相似文献   
48.
Mesenchymal stem cells   总被引:6,自引:0,他引:6  
The tremendous capacity of bone to regenerate is indicative of the presence of stem cells with the capability, by definition, to self-renew as well as to give rise to daughter cells. These primitive progenitors, termed mesenchymal stem cells or bone marrow stromal stem cells, exist postnatally, and are multipotent with the ability to generate cartilage, bone, muscle, tendon, ligament, and fat. Given the demographic challenge of an ageing population, the development of strategies to exploit the potential of stem cells to augment bone formation to replace or restore the function of traumatized, diseased, or degenerated bone is a major clinical and socioeconomic need. Owing to the developmental plasticity of mesenchymal stem cells, there is great interest in their application to replace damaged tissues. Combined with modern advances in gene therapy and tissue engineering, they have the potential to improve the quality of life for many. Critical in the development of this field will be an understanding of the phenotype, plasticity, and potentiality of these cells and the tempering of patients' expectations driven by commercial and media hype to match current laboratory and clinical observations.  相似文献   
49.
Polyclonal antimannan immunoglobulin G (IgG) activates the classical complement pathway and accelerates initiation of the alternative pathway by Canidida albicans. This dual role was assessed for two antimannan IgM monoclonal antibodies (MAbs). MAb B6.1 is specific for an epitope on the acid-labile portion of C. albicans phosphomannan; MAb B6 is specific for an epitope on the acid-stable region. Both MAbs were potent activators of the classical pathway but poor facilitators of alternative pathway initiation.Candida albicans activates the human complement system via both the classical and the alternative pathways, leading to deposition of opsonic complement fragments on the yeast cell surface (8, 10, 18). In previous studies, we described a critical role for naturally occurring antimannan immunoglobulin G (IgG) in complement activation by C. albicans. Those studies used a kinetic assay for C3 deposition on the yeast and immunofluorescence evaluation of the sites of C3 binding (10, 17, 18). Deposition of C3 onto C. albicans cells incubated in normal human serum (NHS) occurs rapidly via the classical pathway and can be detected within the first 2 min of incubation. If the classical pathway is blocked by chelation of Ca2+ with EGTA, C3 deposition occurs via the alternative pathway, but C3 deposition is delayed and a 6-min incubation is required before bound C3 is readily detectable on the yeast surface. Removal of naturally occurring antimannan IgG from the serum by mannan absorption profoundly delays accumulation of C3 on the yeast cell surface, with 12 min or more of incubation being required before appreciable amounts of bound C3 are detected. However, this 12-min delay can be overcome by supplementation of the mannan-absorbed serum with affinity-purified human antimannan IgG in the absence of EGTA to mediate classical pathway initiation or shortened to 6 min in the presence of EGTA to allow antibody-facilitated activation of the alternative pathway. These observations demonstrate a dual role for antimannan IgG in serum from healthy adults in complement activation by C. albicans. Antimannan IgG mediates activation of the classical pathway and facilitates initiation of the alternative pathway (17, 18).In studies described above, we used polyclonal antimannan IgG purified from pooled human plasma. Since C. albicans cells express a number of immunodominant mannan components recognized by rabbits (15, 16), the human polyclonal antimannan IgG likely contains a range of specificities for distinct mannan determinants. It has been shown that rabbit antibodies that are reactive with three different cell wall determinants of group A streptococci display differential abilities to activate the classical or alternative pathway (2). Although the antibodies specific for three different cell wall epitopes all activated the classical pathway, only antibody specific for the N-acetyl-d-glucosamine epitope activated the alternative pathway (2). In a separate study, capsular as well as noncapsular antibodies were found to direct classical-pathway-mediated killing of Haemophilus influenzae type b, whereas only the capsular antibodies promoted killing by the alternative pathway (12). These studies provide evidence that epitope specificity may influence the ability of an antibody to activate the alternative pathway and prompted us to examine whether antibodies that recognize different mannan determinants are able to mediate activation of the classical and alternative pathways by C. albicans.Two IgM monoclonal antibodies (MAbs) that recognize distinct mannan determinants were compared for their abilities to activate the classical or alternative pathway. MAb B6.1 is specific for an acid-labile component of the Candida phosphomannan complex, and MAb B6 is specific for an acid-stable component (5). The MAbs were produced commercially (Montana ImmunoTech, Inc., Bozeman, Mont.).C. albicans CA-1 was grown as yeast forms to stationary phase in glucose (2%)-yeast extract (0.3%)-peptone (1%) broth for 24 h at 37°C as described elsewhere (4, 6, 10). The mannan of CA-1 yeast was purified as described previously (7, 18) and coupled to CNBr-Sepahrose 4B (Pharmacia Biotech, Uppsala, Sweden) (18).Pooled NHS was prepared from peripheral blood from at least 10 healthy adult donors and stored at −80°C. C3 was isolated from frozen human plasma (9, 13) and stored at −80°C until used. C3 was labeled with 125I as described previously (3) by use of IODO-GEN reagent (Pierce, Rockford, Ill.). NHS was absorbed with mannan-Sepharose 4B to remove antimannan antibodies (18).Kinetics of C3 binding were assayed by the method of Kozel et al. (10). To determine whether MAb B6 or B6.1 activates the classical pathway, 2 × 106 yeast cells were incubated at 37°C in 1 ml of a complement binding medium that contained (i) 40% NHS, mannan-absorbed serum, or mannan-absorbed serum supplemented with MAb B6 or B6.1, (ii) sodium Veronal (5 mM)-buffered saline (142 mM, pH 7.3) containing 0.1% gelatin, 1.5 mM CaCl2, and 1 mM MgCl2, and (iii) 125I-labeled C3. To study whether MAb B6 or B6.1 plays a role in alternative pathway initiation, yeast cells were incubated in the manner described above except that the binding medium was not supplemented with Ca2+ and contained 5 mM EGTA and 5 mM MgCl2. At various time intervals from 2 to 16 min, 50-μl samples were withdrawn in duplicate and added to 200 μl of phosphate-buffered saline–0.1% sodium dodecyl sulfate–20 mM EDTA in Millipore MABX-N12 filter plates fitted with BV 1.2-μm-pore-size filter membranes (Millipore, Bedford, Mass.). The cells were washed with phosphate-buffered saline–0.1% sodium dodecyl sulfate, and filter-bound radioactivity was determined with a gamma counter. Nonspecific binding was estimated from cells incubated in NHS containing EDTA and was subtracted from the total counts.Mannan absorption of serum profoundly delayed C3 accumulation on yeast from 2 min to approximately 10 min (Fig. (Fig.11 and and2).2). However, addition of either MAb B6 or MAb B6.1 at 50 μg per ml of reaction mixture to the absorbed serum generated rapid activation kinetics characteristic of C3 deposition via the classical pathway (Fig. (Fig.1)1) (10, 17, 18). This observation was not unexpected, as polyvalent IgM is known to be a potent activator of the classical pathway. Open in a separate windowFIG. 1Effect of MAb B6 or B6.1 on the kinetics of C3 deposition on C. albicans cells via the classical pathway. Yeast cells were incubated in a C3 binding medium containing (i) 40% NHS (•), (ii) 40% mannan-absorbed NHS (○), (iii) 40% mannan-absorbed NHS supplemented with MAb B6 (▴), or (iv) 40% mannan-absorbed NHS supplemented with MAb B6.1 (▿) at 50 μg per ml of reaction mixture. C3 deposition patterns from three independent assays were similar; results from one representative assay are shown.Open in a separate windowFIG. 2Effect of MAb B6 or B6.1 on the kinetics of C3 deposition on C. albicans cells via the alternative pathway. Yeast cells were incubated in a C3 binding medium containing (i) 40% NHS (•), (ii) 40% NHS–EGTA (■), (iii) 40% mannan-absorbed NHS containing EGTA (○), (vi) 40% mannan-absorbed NHS containing EGTA supplemented with MAb B6 (▴), or (iv) 40% mannan-absorbed NHS supplemented with MAb B6.1 (▿) at 50 μg per ml of reaction mixture. C3 deposition patterns from four independent assays were similar; results from one representative assay are shown.The effects of MAbs B6 and B6.1 on activation of the alternative pathway were assessed by addition of the antibodies to mannan-absorbed serum in the presence of EGTA. The results (Fig. (Fig.2)2) showed that neither MAb B6 nor MAb B6.1 at 50 μg per ml of reaction mixture altered the alternative pathway activity of the mannan-absorbed serum. To determine whether the inability of MAb B6 or B6.1 to facilitate initiation of the alternative pathway was influenced by antibody concentration, the experiment represented in Fig. Fig.22 was repeated with mannan-absorbed serum that was supplemented with 10 to 160 μg of MAb B6 or B6.1 per ml. These antibody concentrations were chosen because in our previous studies we found that affinity-purified human antimannan IgG activates both the classical and alternative pathways (17). However, at 10, 40, or 160 μg per ml of reaction mixture, both antibodies failed to enhance alternative pathway activity of mannan-absorbed serum but promoted classical pathway activity (data not shown).The observation that both MAbs were unable to enhance alternative pathway activity was unexpected. Our previous studies showed that addition of polyclonal antimannan IgG to mannan-absorbed NHS containing EGTA produced C3 binding kinetics that were indistinguishable from the kinetics observed with nonabsorbed NHS containing EGTA (17). We further demonstrated IgG-dependent initiation of the alternative pathway by C. albicans using the six purified alternative pathway proteins (17).There are at least three possible explanations for the failure of MAbs B6 and B6.1 to facilitate activation of the alternative pathway. First, it is possible that antimannan antibodies of the IgM class are unable to enhance C3 deposition via the alternative pathway. However, there is evidence that polyclonal IgM is able to enhance alternative pathway-mediated lysis of rabbit erythrocytes by NHS (11, 14). Second, the ability of an antibody to facilitate deposition of C3 via the alternative pathway could be epitope specific; MAbs B6 and B6.1 could have the wrong epitope specificity. As noted above, Eisenberg and Schwab (2) found that polyclonal antibodies specific for one antigen found on group A streptococcal cell walls were able to facilitate initiation of the alternative pathway, whereas antibodies specific for two other antigens were not. If antibody-facilitated activation of the alternative pathway is dependent on epitope specificity, such a finding might influence strategies for induction of protective immunity to Candida. Optimal immunization may require an immunogen that induces antibodies with epitope specificities needed to facilitate activation of the alternative pathway. Finally, we cannot exclude the possibility that human antimannan antibodies are able to facilitate activation of the alternative pathway, whereas mouse antibodies lack this capability.In studies involving a murine model of disseminated candidiasis, MAb B6.1 was shown to be protective, whereas MAb B6 was not (4). However, the protection mechanisms remain to be elucidated. In an in vitro assay, MAb B6.1 but not MAb B6 was found to enhance candidacidal activity of polymorphonuclear leukocytes in the presence of fresh mouse serum, suggesting the involvement of mouse complement in the killing (1). Although assessing the role of complement in MAb B6.1-mediated protection was beyond the scope of this study, our observation that the two antibodies mediate similar kinetics of C3 deposition for C. albicans does not preclude the possibility that the composition and/or accessibility of opsonic complement fragments bound to the yeast cells might differ following complement activation by these two antibodies. Alternatively, the concerted action of several protective functions, including activation of the complement system, may be required for MAb B6.1-mediated protection.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号