首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1909篇
  免费   218篇
  国内免费   5篇
耳鼻咽喉   11篇
儿科学   23篇
妇产科学   15篇
基础医学   313篇
口腔科学   19篇
临床医学   169篇
内科学   546篇
皮肤病学   23篇
神经病学   223篇
特种医学   36篇
外科学   336篇
综合类   12篇
现状与发展   1篇
预防医学   121篇
眼科学   30篇
药学   151篇
中国医学   2篇
肿瘤学   101篇
  2023年   13篇
  2022年   50篇
  2021年   60篇
  2020年   40篇
  2019年   49篇
  2018年   51篇
  2017年   33篇
  2016年   36篇
  2015年   51篇
  2014年   46篇
  2013年   93篇
  2012年   127篇
  2011年   132篇
  2010年   80篇
  2009年   72篇
  2008年   104篇
  2007年   106篇
  2006年   127篇
  2005年   118篇
  2004年   146篇
  2003年   103篇
  2002年   87篇
  2001年   29篇
  2000年   25篇
  1999年   28篇
  1998年   23篇
  1997年   22篇
  1996年   12篇
  1995年   13篇
  1994年   6篇
  1993年   7篇
  1992年   16篇
  1991年   10篇
  1990年   9篇
  1989年   13篇
  1988年   11篇
  1987年   14篇
  1986年   21篇
  1985年   10篇
  1984年   15篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1979年   8篇
  1978年   6篇
  1977年   9篇
  1976年   6篇
  1974年   11篇
  1969年   5篇
排序方式: 共有2132条查询结果,搜索用时 15 毫秒
31.
Current therapies for cartilage repair can be limited by an inability of the repair tissue to integrate with host tissue. Thus, there is interest in developing approaches to enhance integration. We have previously shown that platelet‐rich plasma (PRP) improves cartilage tissue formation. This raised the question as to whether PRP could promote cartilage integration . Chondrocytes were isolated from cartilage harvested from bovine joints, seeded on a porous bone substitute and grown in vitro to form an osteochondral‐like implant. After 7 days, the biphasic construct was soaked in PRP for 30 min before implantation into the core of a donut‐shaped biphasic explant of native cartilage and bone. Controls were not soaked in PRP. The implant–explant construct was cultured for 2–4 weeks. PRP‐soaked bioengineered implants integrated with host tissue in 73% of samples, whereas controls only integrated in 19% of samples. The integration strength, as determined by a push‐out test, was significantly increased in the PRP‐soaked implant group (219 ± 35.4 kPa) compared with controls (72.0 ± 28.5 kPa). This correlated with an increase in glycosaminoglycan and collagen accumulation in the region of integration in the PRP‐treated implant group, compared with untreated controls. Immunohistochemical studies revealed that the integration zone contained collagen type II and aggrecan. The cells at the zone of integration in the PRP‐soaked group had a 3.5‐fold increase in matrix metalloproteinase‐13 gene expression compared with controls. These results suggest that PRP‐soaked bioengineered cartilage implants may be a better approach for cartilage repair due to enhanced integration.  相似文献   
32.
Journal of Thrombosis and Thrombolysis - In the original publication of the article, unfortunately the given name and family name of the author’s in the author group were inadvertently...  相似文献   
33.
34.
Clinical Rheumatology - Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a wide range of manifestations and potential to affect several organ systems. Complications arise...  相似文献   
35.
36.
N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.

Many aspects of plant growth are controlled by the hormone auxin. A distinct feature of auxin is that its hormonal action requires it to be actively transported between cells and ultimately throughout the whole plant in a controlled directional or polarized manner, a process known as polar auxin transport (PAT). The ability of plants to perform PAT is ascribed to the auxin export activity of PIN transporters (1). Plasma membrane PINs can be restricted to a specific side of cells (2), and when this polarity is maintained in continuous plant cell files, the combined activity of identically localized PINs results in auxin flowing in that direction (3). This lays the vectorial foundations for PAT to create local auxin gradients and plant-wide PAT streams that are critical for auxin action and normal plant growth (4, 5).Synthetic PAT inhibitors such as N-1-naphthylphthalamic acid (NPA) were initially developed as herbicides and then subsequently exploited by researchers to identify and characterize the unique PAT-based mechanisms that drive plant development (6). Having been used for over six decades, the question as to how NPA actually inhibits PAT has been keenly pursued. Several putative modes of action have been proposed, but the topic remains to date not fully or satisfactorily resolved (6).Early studies established NPA binding with high affinity to membrane-integral components of plant membranes (710). With the later discovery of pin1 mutants bearing their distinct bare inflorescences reminiscent of NPA-treated plants (11), followed by identification of the PIN gene family and gradual confirmation that PINs were NPA-sensitive auxin transporters that mediated PAT (15), it was apparent that the physiological and genetic evidence overwhelmingly linked NPA to inhibition of PIN activity (6). However, direct molecular association of NPA with PINs has never been reported (6). Instead, a substantial body of data has accumulated suggesting that the NPA target is not PIN itself, but rather other proteins or complexes that either actively coparticipate in PAT or are indirectly involved in control of PAT components (6, 12). Members of the B-family of ABC transporters, such as ABCB1 and ABCB19, showed high-affinity NPA binding and NPA-sensitive auxin export (1, 1215), thus leading to proposals that they may either physically interact with PINs, or functionally interact such that their nonpolar auxin export activity contributes to PAT and/or to regulation of PINs (12, 16). In these scenarios, PIN/PAT would be rendered vulnerable to the NPA sensitivity of ABCB. However, these schemes are not yet fully resolved, are not fully consistent with key genetic and physiological data (6), and are particularly obfuscated by ABCB1/19 functioning both interactively and independently from PINs (1, 12, 1520), with ABCB-PIN interaction occurring in an as-yet-unclarified manner (15, 18).A further twist in assigning ABCBs as the main NPA target is their regulation by their chaperone TWD1/FKBP42 (14, 16), with TWD1 itself also being an NPA-binding protein (14, 17). NPA interferes with this regulation and affects TWD1-ABCB interaction, but curiously NPA cannot bind stably to the ABCB-TWD1 complex (14, 17). As TWD1 has also been implicated in NPA-sensitive actin-based PIN trafficking (17), this has led to a model proposing that TWD1 could mediate the NPA sensitivities of both ABCB and PINs, thus presenting TWD1 as a modulator of PAT (17, 21). In an analogous scheme in some plant species, CYPA immunophilins such as tomato DGT, which are functionally similar to TWD1/FKBP42, are suggested to replace TWD1 in modulating auxin transporters and transducing NPA effects to PINs (12, 21).Similar to TWD1, BIG/TIR3 has also been associated with NPA and PIN trafficking (22). Given the undisputed role of trafficking in controlling PIN polarity (5), these reported effects warrant attention, although they are inconsistent with other reports that NPA perturbs neither vesicular trafficking nor actin dynamics in conditions where auxin transport is inhibited (23, 24). Together with trafficking, phosphorylation is another key modulator of PIN polarity as well as activity (5), so it is not surprising to find hypotheses suggesting that NPA could interfere with critical phosphorylation events (6), particularly as PID, a kinase crucial for PIN trafficking and activation, has also been connected to ABCB function and TWD1/ABCB/NPA interactions (25). Others propose that NPA may mimic natural compounds in their capacity as endogenous regulators of PAT, with plant flavonoids being suspected candidates (6, 26). Since flavonoids can compete with or inhibit ATP-binding in mammalian kinases and ABC transporters (27, 28), and as flavonoids can bind to and inhibit PID (25), a phosphorylation-based NPA mode of action would overlap with this hypothesis and poses the question whether NPA acts similarly as an ATP mimic.With these many potential NPA-affected pathways, there is a need to distinguish between low- and high-affinity NPA targets and possible secondary effects due to prolonged PAT inhibition. Current consensus is that low concentrations of NPA (<10 µM) cause direct inhibition of auxin transporters in PAT (21) and the consequent physiological effects seen in planta (IC50 0.1 to 10 µM) (7, 9, 19, 23, 29). This is associated with high-affinity binding to membranes (Kd 0.01 to 0.1 µM) (7, 8) and the inhibition of PIN/ABCB activity in short-term auxin transport assays (1, 14, 18, 20, 23). In contrast, NPA is thought to affect trafficking (21, 30) and other non-PAT processes (31) when used at higher doses (50 to 200 µM NPA), presumably via binding to its lower-affinity targets, although excessive NPA exposure may also have fast-acting toxic side effects (23). As the in vitro affinity of TWD1 for NPA is surprisingly low (Kd ∼100 µM) (17), the TWD1-mediated NPA effects on PIN/PAT are thought to be of the low-affinity type and linked to trafficking perturbations (17, 21). However, as NPA is always externally applied to plants or cells, it is not clear how or where the drug distributes or accumulates, and thus there may be discrepancies between actual and reported/apparent effective concentrations, as might be the case for TWD1 (17). Finally, NPA also binds with low affinity to inhibit APM1, an aminopeptidase implicated in auxin-related plant growth, but as with trafficking effects, this low-affinity NPA interaction is not connected to direct regulation of PAT (31).Thus, the available data proffer various indirect mechanisms that could lead to NPA inhibition of PIN-mediated PAT, but the proposed schemes have complicating aspects and struggle at times to satisfactorily explain the prime effects of NPA. Here we propose an alternative simpler scenario involving a more direct link between NPA and PINs that would resolve some of these currently outstanding issues. We present evidence from heterologous transport assays, classical in situ membrane binding, and oligomerization studies which collectively suggest that NPA can interact directly in a high-affinity manner with PINs, leading to conformational or structural effects and inhibition of auxin export activity.  相似文献   
37.
ABSTRACT: BACKGROUND: Older adults receiving inpatient rehabilitation have low activity levels and poor mobility outcomes. Increased physical activity may improve mobility. The objective of this Phase II study was to evaluate the feasibility of a randomized controlled trial (RCT) of enhanced physical activity in older adults receiving rehabilitation. METHODS: Patients admitted to aged care rehabilitation with reduced mobility were randomised to receive usual care or usual care plus additional physical activity, which was delivered by a physiotherapist or physiotherapy assistant. The feasibility and safety of the proposed RCT protocol was evaluated. The primary clinical outcome was mobility, which was assessed on hospital admission and discharge by an assessor blinded to group assignment. To determine the most appropriate measure of mobility, three measures were trialled; the Timed Up and Go, the Elderly Mobility Scale and the de Morton Mobility Index. RESULTS: The protocol was feasible. Thirty-four percent of people admitted to the ward were recruited, with 47 participants randomised to a control (n = 25) or intervention group (n = 22). The rates of adverse events (death, falls and readmission to an acute service) did not differ between the groups. Usual care therapists remained blind to group allocation, with no change in usual practice. Physical activity targets were met on weekdays but not weekends and the intervention was acceptable to participants. The de Morton Mobility Index was the most appropriate measure of mobility. CONCLUSIONS: The proposed RCT of enhanced physical activity in older adults receiving rehabilitation was feasible. A larger multi-centre RCT to establish whether this intervention is cost effective and improves mobility is warranted. Trial registration The trial was registered with the ANZTCR (ACTRN12608000427370).  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号