Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas resistance carry point mutations in protospacers, though not all protospacer mutations lead to escape. Here, we show that in the case of Escherichia coli subtype CRISPR/Cas system, the requirements for crRNA matching are strict only for a seven-nucleotide seed region of a protospacer immediately following the essential protospacer-adjacent motif. Mutations in the seed region abolish CRISPR/Cas mediated immunity by reducing the binding affinity of the crRNA-guided Cascade complex to protospacer DNA. We propose that the crRNA seed sequence plays a role in the initial scanning of invader DNA for a match, before base pairing of the full-length spacer occurs, which may enhance the protospacer locating efficiency of the E. coli Cascade complex. In agreement with this proposal, single or multiple mutations within the protospacer but outside the seed region do not lead to escape. The relaxed specificity of the CRISPR/Cas system limits escape possibilities and allows a single crRNA to effectively target numerous related viruses. 相似文献
Viruses are believed to be ubiquitous; however, the diversity of viruses is largely unknown because of the bias of previous research toward pathogenic viruses. Deep sequencing is a promising and unbiased approach to detect viruses from animal-derived materials. Although cranes are known to be infected by several viruses such as influenza A viruses, previous studies targeted limited species of viruses, and thus viruses that infect cranes have not been extensively studied. In this study, we collected crane fecal samples in the Izumi plain in Japan, which is an overwintering site for cranes, and performed metagenomic shotgun sequencing analyses. We detected aviadenovirus-like sequences in the fecal samples and tentatively named the discovered virus crane-associated adenovirus 1 (CrAdV-1). We determined that our sequence accounted for approximately three-fourths of the estimated CrAdV-1 genome size (33,245 bp). The GC content of CrAdV-1 genome is 34.1%, which is considerably lower than that of other aviadenoviruses. Phylogenetic analyses revealed that CrAdV-1 clusters with members of the genus Aviadenovirus, but is distantly related to the previously identified aviadenoviruses. The protein sequence divergence between the DNA polymerase of CrAdV-1 and those of other aviadenoviruses is 45.2–46.8%. Based on these results and the species demarcation for the family Adenoviridae, we propose that CrAdV-1 be classified as a new species in the genus Aviadenovirus. Results of this study contribute to a deeper understanding of the diversity and evolution of viruses and provide additional information on viruses that infect cranes, which might lead to protection of the endangered species of cranes.
Increasing the efficiency of using gypsum binders can be carried out by using not natural gypsum raw materials, but calcium sulfate-containing waste from various industries (phosphogypsum, borogypsum, citrogypsum, etc.). As the main source material in the work, we used gypsum-containing waste from a faience factory in the form of waste molds for casting dishes, souvenirs and plumbing fixtures. It has been established that the optimal binding system is formed by mixing powders of dihydrate technogenic gypsum from a coarse and fine earthenware factory with average particle diameters of 3.473 microns and 3.065 microns in a percentage ratio of 30:70, respectively. Using a computer software developed by the authors, which makes it possible to simulate the microstructure of a raw mixture taking into account the contact interaction of particles and calculate the average coordination number, models of binary packing of particles were constructed at various ratios of their diameters. Studies of the strength of composites obtained on the basis of bidisperse systems have shown the presence of an extremum in the region of mixtures containing 30% coarse powder. With optimal packing, a large number of phase contacts are formed due to the regulation of the grain composition of the bidisperse system. It was revealed that a brick based on the waste of two-water gypsum from earthenware production has 2.5–5 times better characteristics of compressive strength than traditional building wall products based on natural gypsum. At the same time, the strength immediately after molding is more than 3 times higher than that of traditional gypsum products. Even higher indicators are achieved when adding microcalcite in addition to the waste of earthenware production, in this case, the compressive strength is 3–6 times higher, and the strength immediately after molding is almost 3 times higher than that of traditional gypsum products. 相似文献
Thermochemical laser-induced periodic surface structures (TLIPSS) are a relatively new type of periodic structures formed in the focal area of linear polarized laser radiation by the thermally stimulated reaction of oxidation. The high regularity of the structures and the possibility of forming high-ordered structures over a large area open up possibilities for the practical application for changing the optical and physical properties of materials surface. Since the mechanism of formation of these structures is based on a chemical oxidation reaction, an intriguing question involves the influence of air pressure on the quality of structure formation. This paper presents the results on the TLIPSS formation on a thin hafnium film with fs IR laser radiation at various ambient air pressures from 4 Torr to 760 Torr. Despite the decrease in the oxygen content in the ambient environment by two orders of magnitude, the formation of high-ordered TLIPSS (dispersion in the LIPSS orientation angle δθ < 5°) with a period of ≈700 nm occurs within a wide range of parameters variation (laser power, scanning speed). This behavior of TLIPSS formation is in agreement with experimental data obtained earlier on the study of the kinetics of high-temperature oxidation of hafnium at various oxygen pressures. 相似文献
The study was a collaboration between Lifting The Burden (LTB) and the European Headache Federation (EHF). Its aim was to evaluate the implementation of quality indicators for headache care Europe-wide in specialist headache centres (level-3 according to the EHF/LTB standard).
Methods
Employing previously-developed instruments in 14 such centres, we made enquiries, in each, of health-care providers (doctors, nurses, psychologists, physiotherapists) and 50 patients, and analysed the medical records of 50 other patients. Enquiries were in 9 domains: diagnostic accuracy, individualized management, referral pathways, patient’s education and reassurance, convenience and comfort, patient’s satisfaction, equity and efficiency of the headache care, outcome assessment and safety.
Results
Our study showed that highly experienced headache centres treated their patients in general very well. The centres were content with their work and their patients were content with their treatment. Including disability and quality-of-life evaluations in clinical assessments, and protocols regarding safety, proved problematic: better standards for these are needed. Some centres had problems with follow-up: many specialised centres operated in one-touch systems, without possibility of controlling long-term management or the success of treatments dependent on this.
Conclusions
This first Europe-wide quality study showed that the quality indicators were workable in specialist care. They demonstrated common trends, producing evidence of what is majority practice. They also uncovered deficits that might be remedied in order to improve quality. They offer the means of setting benchmarks against which service quality may be judged. The next step is to take the evaluation process into non-specialist care (EHF/LTB levels 1 and 2).