首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2285579篇
  免费   167550篇
  国内免费   4362篇
耳鼻咽喉   31265篇
儿科学   74681篇
妇产科学   64265篇
基础医学   323760篇
口腔科学   63046篇
临床医学   204383篇
内科学   446238篇
皮肤病学   52977篇
神经病学   182676篇
特种医学   88520篇
外国民族医学   665篇
外科学   342965篇
综合类   49827篇
现状与发展   3篇
一般理论   717篇
预防医学   171774篇
眼科学   52026篇
药学   169879篇
  50篇
中国医学   5476篇
肿瘤学   132298篇
  2019年   17627篇
  2018年   25126篇
  2017年   19420篇
  2016年   21996篇
  2015年   24551篇
  2014年   34339篇
  2013年   50885篇
  2012年   69096篇
  2011年   73195篇
  2010年   43170篇
  2009年   40988篇
  2008年   67808篇
  2007年   72033篇
  2006年   73109篇
  2005年   70271篇
  2004年   67138篇
  2003年   64412篇
  2002年   62194篇
  2001年   118021篇
  2000年   121150篇
  1999年   100915篇
  1998年   26940篇
  1997年   24102篇
  1996年   24197篇
  1995年   22826篇
  1994年   20818篇
  1993年   19595篇
  1992年   76055篇
  1991年   72864篇
  1990年   70731篇
  1989年   67679篇
  1988年   61807篇
  1987年   60153篇
  1986年   56536篇
  1985年   53486篇
  1984年   39895篇
  1983年   33632篇
  1982年   19591篇
  1981年   17162篇
  1979年   35294篇
  1978年   24384篇
  1977年   20975篇
  1976年   19044篇
  1975年   20488篇
  1974年   24296篇
  1973年   23445篇
  1972年   22217篇
  1971年   20468篇
  1970年   19190篇
  1969年   18136篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
52.
53.
Abstract

We highlight the critical roles that pharmacists have related to sustaining and advancing the changes being made in the face of the current COVID-19 pandemic to ensure that patients have more seamless and less complex access to treatment. Discussed herein is how the current COVID-19 pandemic is impacting persons with substance use disorders, barriers that persist, and the opportunities that arise as regulations around treatments for this population are eased.  相似文献   
54.
ObjectiveTo evaluate the outcomes after septal myectomy in patients with obstructive hypertrophic cardiomyopathy according to atrial fibrillation and surgical ablation of atrial fibrillation.MethodsWe reviewed patients with obstructive hypertrophic cardiomyopathy who underwent septal myectomy at the Mayo Clinic from 2001 to 2016. History of atrial fibrillation was obtained from patient histories and electrocardiograms. All-cause mortality was the primary end point.ResultsA total of 2023 patients underwent septal myectomy, of whom 394 (19.5%) had at least 1 episode of atrial fibrillation preoperatively. Among patients with atrial fibrillation, 76 (19.3%) had only 1 known episode, 278 (70.6%) had recurrent paroxysmal atrial fibrillation, and 40 (10.2%) had persistent atrial fibrillation. Surgical ablation was performed in 190 patients at the time of septal myectomy, including 148 with pulmonary vein isolation and 42 with the classic maze procedure. Among all patients, operative mortality was 0.4%, and there were no early deaths in patients undergoing surgical ablation. Over a median follow-up of 5.6 years, patients with preoperative atrial fibrillation had increased mortality (hazard ratio, 1.36; 95% confidence interval, 0.97-1.91; P = .070) after multivariable adjustment for comorbidities. When considering the impact of atrial fibrillation with or without surgical treatment, the adjusted hazard ratio for mortality in patients undergoing ablation compared with no ablation was 0.93 (95% confidence interval, 0.52-1.69; P = .824).ConclusionsAtrial fibrillation is present preoperatively in one-fifth of patients with obstructive hypertrophic cardiomyopathy undergoing myectomy and showed a trend toward higher all-cause mortality. Survival of patients undergoing septal myectomy with preoperative atrial fibrillation was similar between those who did and did not receive concomitant surgical ablation.  相似文献   
55.
Graphical abstract summarizing the overall results of our study comparing reintervention for a main or central branch pulmonary artery reconstruction site and various patch materials. Autologous pericardium was associate with the lowest reintervention and was free. Multivariable analysis demonstrated lack of superiority of homograft branch patch, which clearly has a much higher cost.
  相似文献   
56.
57.
BACKGROUND AND PURPOSE:Primary posterior fossa tumors comprise a large group of neoplasias with variable aggressiveness and short and long-term outcomes. This study aimed to validate the clinical usefulness of a radiologic decision flow chart based on previously published neuroradiologic knowledge for the diagnosis of posterior fossa tumors in children.MATERIALS AND METHODS:A retrospective study was conducted (from January 2013 to October 2019) at 2 pediatric referral centers, Children''s Hospital of Philadelphia, United States, and Great Ormond Street Hospital, United Kingdom. Inclusion criteria were younger than 18 years of age and histologically and molecularly confirmed posterior fossa tumors. Subjects with no available preoperative MR imaging and tumors located primarily in the brain stem were excluded. Imaging characteristics of the tumors were evaluated following a predesigned, step-by-step flow chart. Agreement between readers was tested with the Cohen κ, and each diagnosis was analyzed for accuracy.RESULTS:A total of 148 cases were included, with a median age of 3.4 years (interquartile range, 2.1–6.1 years), and a male/female ratio of 1.24. The predesigned flow chart facilitated identification of pilocytic astrocytoma, ependymoma, and medulloblastoma sonic hedgehog tumors with high sensitivity and specificity. On the basis of the results, the flow chart was adjusted so that it would also be able to better discriminate atypical teratoid/rhabdoid tumors and medulloblastoma groups 3 or 4 (sensitivity = 75%–79%; specificity = 92%–99%). Moreover, our adjusted flow chart was useful in ruling out ependymoma, pilocytic astrocytomas, and medulloblastoma sonic hedgehog tumors.CONCLUSIONS:The modified flow chart offers a structured tool to aid in the adjunct diagnosis of pediatric posterior fossa tumors. Our results also establish a useful starting point for prospective clinical studies and for the development of automated algorithms, which may provide precise and adequate diagnostic tools for these tumors in clinical practice.

In the past 10 years, there has been an exponential increase in knowledge of the molecular characteristics of pediatric brain tumors, which was only partially incorporated in the 2016 World Health Organization Classification of Tumors of the Central Nervous System.1 The main update in the 2016 Classification was the introduction of the molecular profile of a tumor as an important factor for predicting different biologic behaviors of entities which, on histology, look very similar or even indistinguishable.2 A typical example is the 4 main groups of medulloblastoma: wingless (WNT), sonic hedgehog (SHH) with or without the p53 mutation, group 3, and group 4. Although they may appear similar on microscopy, these categories have distinct molecular profiles, epidemiology, prognosis, and embryologic origin.3Subsequent to the publication of the 2016 World Health Organization Classification, further studies have identified even more molecular subgroups of medulloblastoma with possible prognostic implications4 and also at least 3 new molecular subgroups of atypical teratoid/rhabdoid tumor (AT/RT)5 and several subgroups of ependymoma.6 MR imaging shows promise as a technique for differentiating histologic tumors and their molecular subgroups. This capability relies on not only various imaging characteristics but also the location and spatial extension of the tumor, evident on MR imaging, which can be traced to the embryologic origin of the neoplastic cells.5,7-10One approach to the challenge of identifying imaging characteristics of different tumors in children is to use artificial intelligence. Yet despite this exciting innovation, correctly identifying the location of the mass and its possible use as an element for differential diagnosis still requires the expertise of an experienced radiologist. Previously, D''Arco et al11 proposed a flow chart (Fig 1) for the differential diagnosis of posterior fossa tumors in children based on epidemiologic, imaging signal, and location characteristics of the neoplasm. The aims of the current study were the following: 1) to validate, in a retrospective, large cohort of posterior fossa tumors from 2 separate pediatric tertiary centers, the diagnostic accuracy of that flow chart, which visually represents the neuroadiologist''s mental process in making a diagnosis of posterior fossa tumors in children, 2) to describe particular types of posterior fossa lesions that are not correctly diagnosed by the initial flow chart, and 3) to provide an improved, clinically accessible flow chart based on the results.Open in a separate windowFIG 1.Predesigned radiologic flow chart created according to the literature before diagnostic accuracy analysis. The asterisk indicates brain stem tumors excluded from the analysis. Double asterisks indicate relative to gray matter. Modified with permission from D''Arco et al.11  相似文献   
58.
BACKGROUND AND PURPOSE:Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions.MATERIALS AND METHODS:We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability.RESULTS:Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = −3.164 for MPRAGE; z = −2.066 for TSE; z = −2.645 for FLAIR; all P < .05).CONCLUSIONS:Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.

Head motion is a common cause of image degradation in brain MR imaging. Motion artifacts negatively impact MR image quality and therefore radiologists’ capacity to read the images, ultimately affecting patient clinical care.1 Motion artifacts are more common in noncompliant patients,2 but even in compliant adults, intrascan movement is reported in at least 10% of cases.3 For children who require high-resolution MR images, obtaining optimal image quality can be challenging, owing to the requirement to stay still over long durations needed for acquisition.4 Sedation can be an option, but it carries higher risks, costs, and preparation and recovery time.5In conditions such as intractable focal epilepsy, identification of an epileptogenic lesion is clinically important to guide surgical treatment. However, these lesions can be visually subtle, particularly in children in whom subtle cortical dysplasias are more common.6 Dedicated epilepsy MR imaging protocols use high-resolution 3D sequences to allow better cortical definition and free reformatting of orientation but involve acquisition times in the order of minutes, so data collection becomes more sensitive to motion.7For children in particular, multiple strategies are available for minimizing motion during MR examinations. Collaboration with play specialists using mock scanners and training or projecting a cartoon are good approaches to reduce anxiety.8,9 These tools are not always available in clinical radiology and, even with these strategies, motion can still be an issue.10 Different scanning approaches to correct for intrascan motion have been proposed. Broadly, prospective methods track head motion in real time and modify the acquisition directions accordingly.11 These approaches are applicable to a wide range of sequences but require optical systems with external tracking markers, sometimes uncomfortable or impractical, and extra setup can ultimately result in longer examinations. Furthermore, these approaches may also not be robust to continuous motion.11-13 Retrospective techniques have also been proposed, in some cases relying on imaging navigators that are not compatible with all standard sequences or contrasts.12Here, we use a more general retrospective motion correction technique: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). In this method, k-space samples are reordered to enable retrospective motion correction during image reconstruction.14 Our hypothesis is that DISORDER improves clinical MR imaging quality and readability. To assess its use for clinical sequences, we acquired a dedicated epilepsy MR imaging protocol in 32 children across a wide age range. We used both objective image quality metrics and expert neuroradiologist ratings to evaluate the outcome after motion correction.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号