首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1879篇
  免费   125篇
  国内免费   123篇
耳鼻咽喉   24篇
儿科学   76篇
妇产科学   85篇
基础医学   188篇
口腔科学   63篇
临床医学   244篇
内科学   418篇
皮肤病学   25篇
神经病学   93篇
特种医学   52篇
外科学   316篇
综合类   57篇
预防医学   69篇
眼科学   70篇
药学   176篇
中国医学   6篇
肿瘤学   165篇
  2024年   2篇
  2023年   10篇
  2022年   17篇
  2021年   37篇
  2020年   25篇
  2019年   40篇
  2018年   44篇
  2017年   32篇
  2016年   39篇
  2015年   55篇
  2014年   52篇
  2013年   84篇
  2012年   104篇
  2011年   134篇
  2010年   88篇
  2009年   80篇
  2008年   119篇
  2007年   155篇
  2006年   93篇
  2005年   133篇
  2004年   102篇
  2003年   90篇
  2002年   77篇
  2001年   64篇
  2000年   68篇
  1999年   53篇
  1998年   26篇
  1997年   35篇
  1996年   27篇
  1995年   19篇
  1994年   27篇
  1993年   16篇
  1992年   29篇
  1991年   25篇
  1990年   29篇
  1989年   35篇
  1988年   16篇
  1987年   11篇
  1986年   2篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1973年   1篇
  1972年   3篇
  1970年   1篇
  1962年   1篇
排序方式: 共有2127条查询结果,搜索用时 15 毫秒
41.

Background

Capillary lymphatic venous malformations (CLVM) and associated syndromes, including Klippel–Trenaunay syndrome (KTS) and congenital lipomatous overgrowth, vascular malformation, epidermal nevi, skeletal, and spinal syndrome (CLOVES), are underrecognized disorders associated with high morbidity from chronic pain, recurrent infections, bleeding, and clotting complications. The rarity of these disorders and heterogeneity of clinical presentations make large-scale randomized clinical drug trials challenging. Identification of PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha [gene]) mutations in CLVM has made targeted medications, such as sirolimus, attractive treatment options. The aim of this study was to investigate the safety and efficacy of sirolimus therapy in CLVM.

Procedure

A combined prospective and retrospective cohort of pediatric and young adult patients with CLVM treated with sirolimus was evaluated for disease response, including symptom improvement, quality of life (QOL), and radiologic response. Sirolimus dosing regimens and toxicities were also assessed.

Results

Twenty-nine patients with CLVM, including KTS and CLOVES, were included. Ninety-three percent of patients reported improved QOL, and 86% had improvement in at least one symptom. Most significantly, improvement was noted in 100% of patients with bleeding and 89% with thrombotic complications with corresponding decreases in mean D-dimer (p = .008) and increases in mean fibrinogen (p = .016). No patients had progressive disease on sirolimus. Most common side effects included neutropenia, lymphopenia, infection, and aphthous ulcers/stomatitis. No toxicities were life-threatening, and none required long-term discontinuation of sirolimus.

Conclusion

Sirolimus appears to be effective at reducing complications and improving QOL in patients with CLVM and associated syndromes. In this patient cohort, sirolimus was well tolerated and resulted in few treatment-related toxicities.  相似文献   
42.

Background

Despite recent advances in preoperative diagnostic imaging and operative techniques, biliary variation of the donor still remains a challenge in the procurement of graft. The supraportal right bile duct (BD) variant including presentation as trifurcation is a potential trap for injuring the remnant bile duct of donor.

Methods

Before living/related-donor liver transplantation (LRLT), cholangiogram with magnetic resonance images of each donor was performed as a routine. After exploration of the donor before hilar dissection, intraoperative chloangiography (IOC) was routinely performed. Among the supraportal right bile duct variants, if the preoperative cholangiography showed a suspected trifurcation of the bile duct, we then performed 3 sessions of IOC during liver graft procurement, including prior to hilar dissection, before the division of bile ducts and after the division. We reviewed the cholangiogram and the postoperative laboratory data of a consecutive series of 25 donors of LRLT.

Results

There was no division injury of the remnant bile duct of all of the donors.

Conclusions

Repeated IOC is suggested as a routine for variants of supraportal right bile ducts especially trifurcation pattern in graft procurement to avoid the injury of donor remnant bile ducts.  相似文献   
43.
Several snake venom neurotoxins are larger and more complex than the well-studied group of postsynaptic toxins exemplified by alpha-bungarotoxin. Several of these, exemplified by beta-bungarotoxin, show phospholipase A2 activity (phosphatide 2-acylhydrolase, EC 3.1.1.4) when tested in the presence of detergents. The high hemolytic activity of crotoxin, the neurotoxin of Crotalus durissus terrificus, in the presence of lecithin has been attributed to this activity. The phospholipase A2 activity of several snake venom proteins has now been compared under the physiological conditions of the hemolysis tests.It appears that only the basic component of crotoxin, B, is enzymatically active, and that its activity is not inhibited by component A under these conditions, or in the presence of deoxycholate. Phosphatidylserine is found to be digested more readily than egg white phosphatidylcholine; and also causes hemolysis in conjunction with much lower levels of crotoxin. In neither case is calcium required or stimulating.Phospholipase from Crotalus adamanteus, which is not neurotoxic, digests phosphatidylcholine more rapidly than does crotoxin, but phosphatidylserine more slowly; yet it is slightly less active than crotoxin in the hemolysis test with phosphatidylcholine, and much less with phosphatidylserine. The digestion of several phospholipids by either enzyme fails to release the expected protons in the absence of detergents at 37 degrees .beta-Bungarotoxin, highly neurotoxic, has negligible phospholipase A2 activity in the absence of detergents, and is almost nonhemolytic in conjunction with all phospholipids tested.Binding studies with (125)I-labeled compounds show that rabbit erythrocytes and ghosts have much greater affinity for crotoxin than for beta-bungarotoxin and do not bind Crotalus adamanteus phospholipase. The crotoxin complex is split in the course of binding, with only component B, the hemolytic component, becoming bound. It appears that the role of component A may be to diminish the nonspecific binding tendency of component B.Our data appear to be consistent with the concepts that affinity to membranes, particularly to specific sites on synaptic membranes, is the critical requirement for beta type neurotoxicity, and that this property, at least in some instances, has evolved from phospholipase A2 enzymes, but does not necessarily require retention and expression of enzymatic activity.  相似文献   
44.
A high tricuspid regurgitant jet velocity (TRV) signifies a risk for or established pulmonary hypertension (PH), which is a serious complication in thalassemia patients. The underlying pathophysiology in thalassemia subgroups and potential biomarkers for early detection and monitoring are not well defined, in particular as they relate to spleen removal. To better understand some of these unresolved aspects, we examined 76 thalassemia patients (35 non-transfused), 25 splenectomized non-thalassemia patients (15 with hereditary spherocytosis), and 12 healthy controls. An elevated TRV (>2.5 m/s) was found in 25/76 (33 %) of the patients, confined to non-transfused or those with a late start of transfusions, including patients with hemoglobin H-constant spring, a finding not previously described. These non or late-transfused patients (76 % splenectomized) had significantly increased platelet activation (sCD40L), high platelet count, endothelial activation (endothelin-1), and hemolysis (LDH, plasma-free Hb), while hypercoagulable and inflammatory markers were not significantly increased. The same markers were increased in the seven patients with confirmed PH on cardiac catheterization, suggesting their possible role for screening patients at risk for PH. A combination of hemolysis and absence of spleen is necessary for developing a high TRV, as neither chronic hemolysis in the non-splenectomized thalassemia patients nor splenectomy without hemolysis, in the non-thalassemia patients, resulted in an increase in TRV.  相似文献   
45.
46.
Introduction of the gene for calcitonin into the neuroendocrine PC12 cell line resulted in the expression of the neuronal-specific splice product, calcitonin gene-related peptide (CGRP). Expression of this neuropeptide did not require treatment of the PC12 cells with NGF. By all available criteria, including biochemical, immunological, and morphological analysis, we have determined that the CGRP in stably transfected PC12 cells is sorted selectively into the large, dense-core catecholamine-containing secretory vesicles. Conversely, the CGRP is excluded from the small, synaptophysin-rich vesicles present in the same cells. Stimulation conditions that trigger the release of catecholamines cause a parallel burst in the release of CGRP. In all these respects, the engineered PC12 cells process the foreign CGRP in a manner similar to that seen in spinal motor neurons in vivo. These results indicate that this small (37 amino acids) peptide contains sorting information sufficient for targeting to large, dense-core vesicles in heterologous cells, placing very narrow constraints on the possible location of sorting signals. In addition, this CGRP-expressing cell line opens the possibility of studying the physiological role of CGRP in the establishment and maintenance of neuromuscular contacts. © 1996 Wiley-Liss, Inc.  相似文献   
47.
A Disintegrin and Metalloproteinases (ADAMs) are the principal enzymes for shedding receptor tyrosine kinase (RTK) ectodomains and ligands from the cell surface. Multiple layers of activity regulation, feedback, and catalytic promiscuity impede our understanding of context-dependent ADAM “sheddase” function and our ability to predictably target that function in disease. This study uses combined measurement and computational modeling to examine how various growth factor environments influence sheddase activity and cell migration in the invasive disease of endometriosis. We find that ADAM-10 and -17 dynamically integrate numerous signaling pathways to direct cell motility. Data-driven modeling reveals that induced cell migration is a quantitative function of positive feedback through EGF ligand release and negative feedback through RTK shedding. Although sheddase inhibition prevents autocrine ligand shedding and resultant EGF receptor transactivation, it also leads to an accumulation of phosphorylated receptors (HER2, HER4, and MET) on the cell surface, which subsequently enhances Jnk/p38 signaling. Jnk/p38 inhibition reduces cell migration by blocking sheddase activity while additionally preventing the compensatory signaling from accumulated RTKs. In contrast, Mek inhibition reduces ADAM-10 and -17 activities but fails to inhibit compensatory signaling from accumulated RTKs, which actually enhances cell motility in some contexts. Thus, here we present a sheddase-based mechanism of rapidly acquired resistance to Mek inhibition through reduced RTK shedding that can be overcome with rationally directed combination inhibitor treatment. We investigate the clinical relevance of these findings using targeted proteomics of peritoneal fluid from endometriosis patients and find growth-factor–driven ADAM-10 activity and MET shedding are jointly dysregulated with disease.A Disintegrin and Metalloproteinases (ADAMs), especially ADAM-10 and -17, are the principal mediators of proteolytic ectodomain shedding on the cell surface (1). ADAMs and the closely related matrix metalloproteinases (MMPs) work together as “sheddases” to cleave hundreds of diverse transmembrane substrates including growth factor ligands, receptor tyrosine kinases (RTKs), adhesion molecules, and even proteases themselves from the cell surface. Unfortunately, little is known regarding how such a broad palette of proteolytic activity integrates to modulate behaviors such as cellular motility. Furthermore, extensive cross-talk and complexity among signaling networks, proteases, and their substrates make understanding sheddase regulation on a component-by-component basis challenging (2). Therapeutics have targeted sheddases and their substrates for the treatment of invasive diseases such as cancer, yet many of these inhibitors have failed in clinical trials (3). Therefore, a need exists for understanding how the balance of sheddase-mediated degradation integrates multiple layers of signaling networks to coordinately influence cell behavior in various disease contexts.Here we study how sheddase activity contributes to cell migration in the invasive disease of endometriosis, defined by the presence of endometrial-like tissue residing outside the uterus. Up to 10% of adult females and 40% of infertile women have the disease, which also exhibits comorbidity with several cancers (4, 5). Endometriosis currently has no cure: hormonal therapies merely manage the disease with significant side effects, and surgery provides only temporary relief for many, with recurrence rates as great as 40% within 5 y postoperation (6). Like cancer, endometriosis is associated with aberrant cell invasion into ectopic organ sites, and endometriotic tissues often exhibit dysregulated molecular pathways commonly perturbed in other invasive diseases. Mitogenic and inflammatory phospho-signaling [for example, phosphorylated extracellular-signal-related kinase 1/2 (p-Erk1/2), phosphorylated protein kinase B (p-Akt), and phosphorylated p38 mitogen-activated protein kinase (p-p38)], RTKs (including epidermal growth factor receptor, EGFR), and metalloproteinases have all been clinically associated with endometriosis (7, 8), and consequently represent attractive therapeutic strategies (911).Many challenges in developing targeted therapeutics stem from network-level complexities such as compensatory feedback, and recent work has demonstrated how critical such mechanisms are to achieving therapeutic success, especially in cancer (12, 13). Computational models of systems-level biochemical networks have shown promise as tools to understand how multiple enzymatic reactions integrate to impact overall biological behavior, often with the goal of aiding the design of personalized or combination therapies (14, 15). Considering its complex role in disease, sheddase regulation represents an ideal application of such network-level approaches. In this work, we apply the “cue–signal–response” (CSR) paradigm (14, 15) (Fig. 1A) to examine how disease-implicated growth-factor cues interact with experimentally monitored phospho-protein and protease networks (collectively referred to as signals), ultimately to influence cellular migration response. Computational modeling elucidates quantitative and predictive relationships among multiple layers of experimental data and offers testable hypotheses of context-dependent behavior and signaling feedback. We find ADAM-10 and -17 to be critical regulators of motility that are dynamically controlled through several signaling pathways, thereby affecting cell behavior through both positive feedback from EGF ligand release and negative feedback from Hepatocyte Growth Factor Receptor (HGFR; MET), Human Epidermal Growth Factor Receptor 2 (HER2), and HER4 RTK shedding. We find kinase inhibition generally reduces ADAM-10 and -17 activities, reduces subsequent RTK shedding, and consequently allows the accumulated RTKs to enhance downstream c-Jun N-terminal kinase (Jnk) and p38 signaling. Thus, here we demonstrate an ADAM-10 and -17–based mechanism of rapidly acquired resistance to kinase inhibition through reduced RTK shedding that can be overcome with combination therapy. Targeted proteomic analysis of clinical samples from endometriosis patients indeed confirms growth-factor–driven ADAM-10 activity and consequent MET shedding are dysregulated with disease. Overall, our results have wide implications for designing combination therapies and identifying context-dependent personalized therapeutic strategies for both kinase and protease inhibitors.Open in a separate windowFig. 1.CSR study design. (A) CSR overview: we stimulate endometriotic cells with a panel of growth factor cues; record multiple downstream signals comprising measurements of phospho-signaling, sheddase regulation, and sheddase substrate regulation; and use computational modeling to map these observations onto cell migration responses. (B) Overview of signals and responses included in the CSR dataset. All receptors shown were directly measured and/or stimulated. (C) Experimental timeline of CSR study. Dark colored lines denote measurement time points. At lower left, cell migration is depicted as single-cell tracks, where initial cell positions were centered for visualization.  相似文献   
48.
Hepatocellular carcinoma (HCC) is among the most common and lethal human cancers worldwide and is closely associated with chronic hepatitis B virus (HBV) infection. Pre-S deleted proteins are naturally occurring mutant forms of HBV large surface proteins that are expressed by HBV surface genes harboring deletion mutations over the pre-S gene segments. It has been well demonstrated that HBV pre-S deleted proteins function as important oncoproteins, which promote malignant phenotypes of hepatocytes through the activation of multiple oncogenic signaling pathways and result in HCC formation. The oncogenic signaling pathways activated by pre-S deleted proteins have been verified as potential therapeutic targets for the prevention of HCC development. Moreover, the presence of pre-S gene deletions and the expression of pre-S deleted proteins in the blood and liver tissues of HBV-infected patients have been evaluated as valuable biomarkers for predicting a higher risk of HCC development and recurrence after curative surgical resection. Therefore, the precise detection of pre-S gene deletions and pre-S deleted proteins holds great promise as regards identifying the patients at higher risk of HCC development and recurrence, thus aiding in more timely and better treatments to improve their survival. This review summarizes the major approaches used for the detection of pre-S gene deletions and pre-S deleted proteins, including the approaches based on Sanger DNA sequencing, pre-S gene chips, next-generation sequencing and immunohistochemistry staining, and it highlights their important applications in the prediction of higher risks of HCC development and recurrence.  相似文献   
49.
In the present study, the antioxidative and inhibitory activity of Zingiber officinale Rosc. rhizomes-derived materials (on mushroom tyrosinase) were evaluated. The bioactive components of Z. officinale rhizomes were characterized by spectroscopic analysis as zingerone and dehydrozingerone, which exhibited potent antioxidant and tyrosinase inhibition activities. A series of substituted dehydrozingerones [(E)-4-phenyl-3-buten-2-ones] were prepared in admirable yields by the reaction of appropriate benzaldehydes with acetone and the products were evaluated in terms of variation in the dehydrozingerone structure. The synthetic analogues were examined for their antioxidant and antityrosinase activities to probe the most potent analogue. Compound 26 inhibited Fe2+-induced lipid peroxidation in rat brain homogenate with an IC50 = 6.3+/-0.4 microM. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quencher assay, compounds 2, 7, 17, 26, 28, and 29 showed radical scavenging activity equal to or higher than those of the standard antioxidants, like alpha-tocopherol and ascorbic acid. Compound 27 displayed superior inhibition of tyrosinase activity relative to other examined analogues. Compounds 2, 17, and 26 exhibited non-competitive inhibition against oxidation of 3,4-dihydroxyphenylalanine (L-DOPA). From the present study, it was observed that both number and position of hydroxyl groups on aromatic ring and a double bond between C-3 and C-4 played a critical role in exerting the antioxidant and antityrosinase activity.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号