首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2489312篇
  免费   208659篇
  国内免费   10689篇
耳鼻咽喉   35341篇
儿科学   74553篇
妇产科学   65533篇
基础医学   346742篇
口腔科学   69943篇
临床医学   230489篇
内科学   486320篇
皮肤病学   49363篇
神经病学   206403篇
特种医学   99758篇
外国民族医学   926篇
外科学   372398篇
综合类   75184篇
现状与发展   21篇
一般理论   994篇
预防医学   199444篇
眼科学   58703篇
药学   190059篇
  118篇
中国医学   10786篇
肿瘤学   135582篇
  2021年   21384篇
  2019年   20688篇
  2018年   27907篇
  2017年   22271篇
  2016年   23689篇
  2015年   28251篇
  2014年   39866篇
  2013年   57366篇
  2012年   78277篇
  2011年   82543篇
  2010年   49650篇
  2009年   46731篇
  2008年   76101篇
  2007年   80362篇
  2006年   80871篇
  2005年   78325篇
  2004年   73788篇
  2003年   71102篇
  2002年   69622篇
  2001年   114715篇
  2000年   118574篇
  1999年   100332篇
  1998年   29027篇
  1997年   26630篇
  1996年   26344篇
  1995年   25455篇
  1994年   23967篇
  1993年   21988篇
  1992年   79976篇
  1991年   76927篇
  1990年   74034篇
  1989年   71229篇
  1988年   66178篇
  1987年   65076篇
  1986年   61561篇
  1985年   58578篇
  1984年   44337篇
  1983年   37765篇
  1982年   22946篇
  1979年   41388篇
  1978年   29051篇
  1977年   24404篇
  1976年   22870篇
  1975年   23989篇
  1974年   29692篇
  1973年   28085篇
  1972年   26279篇
  1971年   24184篇
  1970年   22778篇
  1969年   21113篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
93.
94.
95.
文题释义:股骨头坏死中日友好医院分型的有限元分析:根据李子荣等提出的中日友好医院分型,建立股骨头坏死三维模型,分为 M型(内侧型)、C型(中央型)和 L型(外侧型),其中 L型包括L1型(次外侧型)、L2型(极外侧型)和 L3型(全头型)。通过对建立的模型进行有限元分析,为该分型的保髋治疗提供了一定力学依据,显示外侧柱的存留是精准预防塌陷的重要因素,为进一步实现个体化治疗提供力学基础。 腓骨支撑坏死股骨头保髋手术:是对于早中期股骨头坏死需要保留股骨头患者进行的一种手术方式。首先需对股骨头进行髓芯减压,清除一定坏死骨,空腔填塞松质骨(髂骨为主),打压结实后植入腓骨(异体或自体)支撑,给坏死区的提供力学支撑及生物学修复,预防股骨头进一步坏死及塌陷。 背景:研究报道股骨头坏死的保髋疗效与外侧柱存留密切相关,中日友好医院分型是根据三柱结构确立的,对股骨头塌陷的预测准确性高。 目的:建立股骨头坏死中日友好医院分型各分型仿真的三维有限元模型,通过有限元分析各分型腓骨植入的力学变化,探讨外侧柱存留对保髋疗效的意义,为该分型的塌陷精准预测提供基础。 方法:建立正常股骨头、中日友好医院分型(M型、C型、L1型、L2型、L3型)股骨头坏死及其腓骨植入3组11种三维有限元模型,运用ANSYS软件进行有限元分析计算,观察各组模型的最大应力值、最大位移值及股骨头内部载荷传递模式。 结果与结论:①坏死组位移最大,应变最大,且因坏死分型不同而位移不同,位移变化如下:M型相似文献   
96.
97.

Purpose

Chest wall pain is an uncommon but bothersome late complication following lung stereotactic body radiation therapy. Despite numerous studies investigating predictors of chest wall pain, no clear consensus has been established for a chest wall constraint. The aim of our study was to investigate factors related to chest wall pain in a homogeneous group of patients treated at our institution.

Patients and methods

All 122 patients were treated with the same stereotactic body radiation therapy regimen of 48 Gy in three fractions, seen for at least 6 months of follow-up, and planned with heterogeneity correction. Chest wall pain was scored according to the Common Terminology Criteria for Adverse Events classification v3.0. Patient (age, sex, diabetes, osteoporosis), tumour (planning target volume, volume of the overlapping region between planning target volume and chest wall) and chest wall dosimetric parameters (volumes receiving at least 30, 40, and 50 Gy, the minimal doses received by the highest irradiated 1, 2, and 5 cm3, and maximum dose) were collected. The correlation between chest wall pain (grade 2 or higher) and the different parameters was evaluated using univariate and multivariate logistic regression.

Results

Median follow-up was 18 months (range: 6–56 months). Twelve patients out of 122 developed chest wall pain of any grade (seven with grade 1, three with grade 2 and two with grade 3 pain). In univariate analysis, only the volume receiving 30 Gy or more (P = 0.034) and the volume of the overlapping region between the planning target volume and chest wall (P = 0.038) significantly predicted chest wall pain, but these variables were later proved non-significant in multivariate regression.

Conclusion

Our analysis could not find any correlation between the studied parameters and chest wall pain. Considering our present study and the wide range of differing results from the literature, a reasonable conclusion is that a constraint for chest wall pain is yet to be defined.  相似文献   
98.
To evaluate the changes in alveolar contour after guided bone regeneration (GBR) with two different combinations of biomaterials in dehiscence defects arou  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号