首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1751756篇
  免费   140046篇
  国内免费   6710篇
耳鼻咽喉   22639篇
儿科学   56878篇
妇产科学   47380篇
基础医学   252328篇
口腔科学   48643篇
临床医学   157143篇
内科学   351315篇
皮肤病学   41728篇
神经病学   139335篇
特种医学   70264篇
外国民族医学   330篇
外科学   271873篇
综合类   38374篇
现状与发展   2篇
一般理论   516篇
预防医学   139186篇
眼科学   38273篇
药学   126945篇
  5篇
中国医学   3089篇
肿瘤学   92266篇
  2018年   17185篇
  2016年   15933篇
  2015年   17763篇
  2014年   24679篇
  2013年   37347篇
  2012年   46414篇
  2011年   50393篇
  2010年   31073篇
  2009年   30070篇
  2008年   47327篇
  2007年   50551篇
  2006年   51776篇
  2005年   49925篇
  2004年   47976篇
  2003年   46567篇
  2002年   44599篇
  2001年   84352篇
  2000年   87027篇
  1999年   72383篇
  1998年   21018篇
  1997年   18681篇
  1996年   19877篇
  1995年   19747篇
  1994年   18333篇
  1993年   17343篇
  1992年   59370篇
  1991年   58714篇
  1990年   56999篇
  1989年   54587篇
  1988年   50445篇
  1987年   49683篇
  1986年   46820篇
  1985年   45139篇
  1984年   34175篇
  1983年   28887篇
  1982年   17517篇
  1981年   15876篇
  1980年   14897篇
  1979年   31322篇
  1978年   22731篇
  1977年   19199篇
  1976年   17880篇
  1975年   19162篇
  1974年   22599篇
  1973年   21491篇
  1972年   20221篇
  1971年   18847篇
  1970年   17285篇
  1969年   16293篇
  1968年   15230篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
81.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
82.
BACKGROUND Metabolic disturbances including changes in serum calcium,magnesium or phosphate(P) influence the prevalence of type 2 diabetes mellitus(DM).We assessed the importance of serum P in elderly patients with type 2 DM vs nondiabetes mellitus(non-DM) in relation to renal function.AIM To determine the association between serum P and serum glucose or insulin resistance in diabetic and non-diabetic patients.METHODS One hundred-ten subjects with a mean age of 69.02±14.3 years were enrolled.Twenty-nine of the participants had type 2 DM(26.4%).The incidence of hypertension,smoking and receiving vitamin D(vitD) derivates were recorded.The participants were classified by both estimated glomerular filtration rate(eGFR) and albuminuria categories according to the Kidney Disease Improving Global Outcomes 2012 criteria.RESULTS We divided the patients in two groups according to the P cut-off point related to DM value.A comparison between high and low P showed that body mass index30.2±6.3 vs 28.1±4.6(P=0.04),mean glucose 63.6 vs 50.2(P=0.03),uric acid 6.7±1.6 vs 6.09±1.7(P=0.05),mean intact-parathyroid hormone 68.06 vs 47.4(P=0.001),systolic blood pressure 147.4±16.7 vs 140..2±16.1(P=0.02),mean albuminuria 63.2 vs 50.6(P=0.04) and eGFR 45.6±22.1 vs 55.4±21.5(P=0.02)were significantly different.χ~2 tests showed a significant association between high P and DM,hypertension,receiving vitD,smoking and eGFR stage(χ~2=6.3,P=0.01,χ~2=3.9,P=0.03,χ~2=6.9,P=0.009,χ~2=7.04,P=0.01 and χ~2=7.36,P=0.04,respectively).The adjusted model showed that older age,female gender and increased body mass index were significant predictors of type 2 DM when entering the covariates.CONCLUSION High serum P contributes to vascular and metabolic disturbances in elderly patients with type 2 DM and renal impairment.  相似文献   
83.
To evaluate the changes in alveolar contour after guided bone regeneration (GBR) with two different combinations of biomaterials in dehiscence defects arou  相似文献   
84.
85.
86.
87.
88.
Porocarcinoma is an unusual, locally aggressive and potentially fatal neoplasm. Several cutaneous malignancies have been described in association with porocarcinoma, including squamous cell carcinoma, basal cell carcinoma and tricholemmal carcinoma. Previous reports have indicated that the occurrence of malignant tumours in combination with porocarcinoma is extremely rare, in particular with regard to Bowen disease (BD). We report an uncommon case of porocarcinoma occurring synchronously in a single BD lesion in a 63‐year‐old woman with multiple BD lesions. The clinical and histological findings confirmed this diagnosis.  相似文献   
89.
Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology’s offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures.  相似文献   
90.
Individuals with sudden unilateral deafness offer a unique opportunity to study plasticity of the binaural auditory system in adult humans. Stimulation of the intact ear results in increased activity in the auditory cortex. However, there are no reports of changes at sub-cortical levels in humans. Therefore, the aim of the present study was to investigate changes in sub-cortical activity immediately before and after the onset of surgically induced unilateral deafness in adult humans. Click-evoked auditory brainstem responses (ABRs) to stimulation of the healthy ear were recorded from ten adults during the course of translabyrinthine surgery for the removal of a unilateral acoustic neuroma. This surgical technique always results in abrupt deafferentation of the affected ear. The results revealed a rapid (within minutes) reduction in latency of wave V (mean pre = 6.55 ms; mean post = 6.15 ms; p < 0.001). A latency reduction was also observed for wave III (mean pre = 4.40 ms; mean post = 4.13 ms; p < 0.001). These reductions in response latency are consistent with functional changes including disinhibition or/and more rapid intra-cellular signalling affecting binaurally sensitive neurons in the central auditory system. The results are highly relevant for improved understanding of putative physiological mechanisms underlying perceptual disorders such as tinnitus and hyperacusis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号