首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2075篇
  免费   180篇
  国内免费   18篇
耳鼻咽喉   12篇
儿科学   106篇
妇产科学   134篇
基础医学   304篇
口腔科学   30篇
临床医学   190篇
内科学   304篇
皮肤病学   44篇
神经病学   60篇
特种医学   225篇
外科学   205篇
综合类   152篇
一般理论   1篇
预防医学   154篇
眼科学   13篇
药学   102篇
中国医学   41篇
肿瘤学   196篇
  2023年   9篇
  2022年   25篇
  2021年   38篇
  2020年   31篇
  2019年   29篇
  2018年   44篇
  2017年   32篇
  2016年   40篇
  2015年   50篇
  2014年   60篇
  2013年   74篇
  2012年   104篇
  2011年   86篇
  2010年   109篇
  2009年   90篇
  2008年   79篇
  2007年   70篇
  2006年   95篇
  2005年   63篇
  2004年   50篇
  2003年   60篇
  2002年   50篇
  2001年   61篇
  2000年   38篇
  1999年   44篇
  1998年   61篇
  1997年   78篇
  1996年   64篇
  1995年   56篇
  1994年   42篇
  1993年   47篇
  1992年   35篇
  1991年   32篇
  1990年   37篇
  1989年   40篇
  1988年   34篇
  1987年   39篇
  1986年   37篇
  1985年   32篇
  1984年   23篇
  1983年   21篇
  1982年   23篇
  1981年   14篇
  1980年   21篇
  1979年   15篇
  1977年   11篇
  1976年   7篇
  1974年   7篇
  1972年   7篇
  1969年   7篇
排序方式: 共有2273条查询结果,搜索用时 31 毫秒
21.
22.
S fimbrial adhesins (Sfa), which are able to recognize sialic acid-containing receptors on eukaryotic cells, are produced by Escherichia coli strains causing urinary tract infections or newborn meningitis. We recently described the cloning and molecular characterization of a determinant, termed sfaI, from the chromosome of an E. coli urinary tract infection strain. Here we present data concerning a S fimbria-specific gene cluster, designated sfaII, of an E. coli newborn meningitis strain. Like the SfaI complex, SfaII consists of the major subunit protein SfaA (16 kDa) and the minor subunit proteins SfaG (17 kDa), SfaS (15 kDa), and SfaH (29 kDa). The genes encoding the subunit proteins of SfaII were identified and sequenced. Their protein sequences were calculated from the DNA sequences and compared with those of the SfaI complex subunits. Although the sequences of the two major SfaA subunits differed markedly, the sequences of the minor subunits showed only a few amino acid exchanges (SfaG, SfaH) or were completely identical (SfaS). The introduction of a site-specific mutation into the gene sfaSII and subsequent analysis of an SfaS-negative clone indicated that sfaSII codes for the sialic acid-specific adhesin of the meninigitis isolate. These data were confirmed by the isolation and characterization of the SfaSII protein and the determination of its N-terminal amino acid sequence. The identity between the sialic acid-specific adhesins of SfaI and SfaII revealed that differences between the two Sfa complexes with respect to their capacities to agglutinate erythrocytes must result from sequence alterations of subunit proteins other than SfaS.  相似文献   
23.
Recently we have described the molecular cloning of the genetic determinant coding for the S-fimbrial adhesin (Sfa), a sialic acid-recognizing pilus frequently found among extraintestinal Escherichia coli isolates. Fimbriae from the resulting Sfa+ E. coli K-12 clone were isolated, and an Sfa-specific antiserum was prepared. Western blots indicate that S fimbriae isolated from different uropathogenic and meningitis-associated E. coli strains, including O83:K1 isolates, were serologically related. The Sfa-specific antibodies did not cross-react with P fimbriae, but did cross-react with F1C fimbriae. Furthermore the sfa+ recombinant DNAs and some cloned sfa-flanking regions were used as probes in Southern experiments. Chromosomal DNAs isolated from O18:K1 and O83:K1 meningitis strains with and without S fimbriae and from uropathogenic O6:K+ strains were hybridized against these sfa-specific probes. Only one copy of the sfa determinant was identified on the chromosome of these strains. No sfa-specific sequences were observed on the chromosome of E. coli K-12 strains and an O7:K1 isolate. With the exception of small alterations in the sfa-coding region the genetic determinants for S fimbriae were identical in uropathogenic O6:K+ and meningitis O18:K1 and O83:K1 strains. The sfa determinant was also detected on the chromosome of K1 isolates with an Sfa-negative phenotype, and specific cross-hybridization signals were visible after blotting against F1C-specific DNA. In addition homology among the different strains was observed in the sfa-flanking regions.  相似文献   
24.
R Marre  B Kreft    J Hacker 《Infection and immunity》1990,58(10):3434-3437
Escherichia coli K-12 strains producing S-fimbrial adhesins, F1C fimbriae, and mutagenized fimbriae were tested in a binding assay with a renal tubular cell line. S-fimbrial adhesins and F1C fimbriae mediated binding to tubular cells. The SfaA, SfaG, and SfaS subunits of S fimbriae contributed to attachment. Site-specific mutations in the sfaS gene reduced binding. The inhibition profile of F1C fimbriae resembled that of S fimbriae.  相似文献   
25.
Two 18S rRNA-targeted oligonucleotide probes specific for Candida albicans and Candida parapsilosis were used to detect and identify by fluorescent in situ hybridization these medically important Candida species in deep organs of mice after experimental systemic infection. The C. albicans-specific probe detected fungal cells in kidney, spleen, and brain sections of a mouse infected with C. albicans but not in a mouse infected with the closely related species C. parapsilosis. Conversely, the C. parapsilosis-specific probe detected fungal cells in the deep organs of a mouse infected with C. parapsilosis but not in the deep organs of a C. albicans-infected mouse. In addition, the C. albicans-specific probe was used to detect this species in human blood spiked with yeast cells by a lysis-filtration assay and subsequent fluorescent in situ hybridization. By this assay, as few as three yeast cells per 0.5 ml of blood were consistently detected. Our results demonstrate that fluorescent in situ hybridization with species-specific rRNA-targeted oligonucleotide probes provides a novel, culture-independent method for the sensitive detection and identification of Candida species in clinically relevant material.  相似文献   
26.
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H(-), pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H(-) strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H(-).  相似文献   
27.
Lee SK  Hacker DL 《Virology》2001,286(2):317-327
Southern cowpea mosaic virus (SCPMV) is a positive-sense RNA virus with T = 3 icosahedral symmetry. The coat protein (CP) has two domains, the random (R) domain and the shell (S) domain. The R domain is formed by the N-terminal 64 amino acids (aa) and is localized to the interior of the particle where it is expected to interact with the viral RNA. The R domain (aa 1--57) was expressed in Escherichia coli as a recombinant protein (rWTR) containing a nonviral C-terminal extension with two histidine tags. The RNA binding site of the R domain was identified by Northwestern blotting and electrophoretic mobility shift assay (EMSA) using recombinant wild-type and mutant R domain proteins. Deletions within the R domain revealed that the RNA binding site is localized to its N-terminal 30 aa. RNA binding by this element was found to be nonspecific with regard to RNA sequence and was sensitive to high salt concentrations, suggesting that electrostatic interactions are important for RNA binding by the R domain. The RNA binding site includes 11 basic residues, eight of which are located in the arginine-rich region between aa 22 and 30. It was demonstrated using alanine substitution mutants that the basic residues of the arginine-rich region but not those present at positions 3, 4, and 7 are necessary for RNA binding. None of the basic residues within the arginine-rich region are specifically required for RNA binding, but the overall charge of the N-terminal 30 aa is important. Proline substitution mutations within the N-terminal 30 aa, and alanine substitutions for prolines at positions 18, 20, and 21, did not affect the RNA binding activity of the R domain. However, it was demonstrated by circular dichroism (CD) that the conformation of the N-terminal 30 aa of the R domain changes from a random coil to an alpha-helix in the presence of 50% trifluoroethanol (TFE). The possible role for this structural change in RNA binding by the R domain is discussed.  相似文献   
28.
The adhesins of Escherichia coli strains HB101(pANN801-13) and HB101(pAZZ50), which express S fimbriae encoded by a recombinant plasmid containing the sfaI and sfaII gene clusters, respectively, were characterized with regard to the detailed structural requirements of their binding to sialyloligosaccharides on (neo)glycoproteins and (neo)glycolipids. From binding and binding inhibition studies in solid-phase enzyme immunoassays with isolated S fimbriae, several major conclusions can be drawn. S fimbriae bind specifically to sialic acid on gangliosides. The most active structural variant of sialic acid on GM3 ganglioside is N-glycolylneuraminic acid (NeuGc). In contrast to previous reports, high binding activities were measured also for b-series gangliosides expressing NeuAc alpha (2-8)NeuAc. In agreement with earlier studies, the site of sialic acid substitution to subterminal sugars strongly influences the binding to sialyloligosaccharides, i.e., alpha-6-linked sialic acid is only poorly recognized by the adhesin compared with alpha-3-linked sialic acid. C-8 and C-9 hydroxyl groups form essential structural elements of sialic acid in the binding event.  相似文献   
29.
30.
In vivo and in vitro studies have demonstrated both promise and current limitations in tissue engineering of fat. Herein, we report the establishment of a well-defined three-dimensional (3-D) in vitro model useful for systematic investigations of 3-D adipogenesis. Polyglycolic acid fiber meshes were dynamically seeded with 3T3-L1 preadipocytes; subsequently, cell-polymer constructs were hormonally induced and cultivation under three different conditions was evaluated. Regarding tissue coherence and intracellular lipid content, culture of cell-polymer constructs either dynamically in well plates or in stirred bioreactors yielded similar results, which were distinctly improved compared with static conditions in well plates. At the protein and mRNA levels, significantly increased expression of genes characteristic for a mature adipose phenotype was demonstrated for constructs dynamically cultured in well plates, as compared with static conditions. Furthermore, investigation of lipolysis under stimulating and inhibiting conditions demonstrated functionality of the dynamically differentiated constructs. Using dynamic culture conditions, the presented in vitro model system is suggested as a valuable tool serving both fat tissue engineering and basic research by facilitating investigations of tissue-inherent features not possible under conventional 2-D culture conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号