全文获取类型
收费全文 | 10329篇 |
免费 | 558篇 |
国内免费 | 80篇 |
专业分类
耳鼻咽喉 | 117篇 |
儿科学 | 231篇 |
妇产科学 | 195篇 |
基础医学 | 1323篇 |
口腔科学 | 240篇 |
临床医学 | 1050篇 |
内科学 | 2433篇 |
皮肤病学 | 112篇 |
神经病学 | 1206篇 |
特种医学 | 358篇 |
外科学 | 1673篇 |
综合类 | 13篇 |
预防医学 | 292篇 |
眼科学 | 106篇 |
药学 | 715篇 |
中国医学 | 12篇 |
肿瘤学 | 891篇 |
出版年
2024年 | 16篇 |
2023年 | 55篇 |
2022年 | 153篇 |
2021年 | 223篇 |
2020年 | 136篇 |
2019年 | 183篇 |
2018年 | 257篇 |
2017年 | 211篇 |
2016年 | 251篇 |
2015年 | 239篇 |
2014年 | 361篇 |
2013年 | 500篇 |
2012年 | 781篇 |
2011年 | 715篇 |
2010年 | 405篇 |
2009年 | 388篇 |
2008年 | 676篇 |
2007年 | 646篇 |
2006年 | 685篇 |
2005年 | 664篇 |
2004年 | 695篇 |
2003年 | 605篇 |
2002年 | 513篇 |
2001年 | 106篇 |
2000年 | 84篇 |
1999年 | 95篇 |
1998年 | 119篇 |
1997年 | 89篇 |
1996年 | 96篇 |
1995年 | 85篇 |
1994年 | 70篇 |
1993年 | 79篇 |
1992年 | 76篇 |
1991年 | 78篇 |
1990年 | 53篇 |
1989年 | 61篇 |
1988年 | 45篇 |
1987年 | 40篇 |
1986年 | 44篇 |
1985年 | 40篇 |
1984年 | 39篇 |
1983年 | 32篇 |
1982年 | 44篇 |
1981年 | 42篇 |
1980年 | 32篇 |
1979年 | 22篇 |
1978年 | 18篇 |
1977年 | 16篇 |
1975年 | 13篇 |
1972年 | 13篇 |
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
61.
Giorgio Speranza 《Materials》2022,15(13)
Recently, the scientific community experienced two revolutionary events. The first was the synthesis of single-layer graphene, which boosted research in many different areas. The second was the advent of quantum technologies with the promise to become pervasive in several aspects of everyday life. In this respect, diamonds and nanodiamonds are among the most promising materials to develop quantum devices. Graphene and nanodiamonds can be coupled with other carbon nanostructures to enhance specific properties or be properly functionalized to tune their quantum response. This contribution briefly explores photoelectron spectroscopies and, in particular, X-ray photoelectron spectroscopy (XPS) and then turns to the present applications of this technique for characterizing carbon nanomaterials. XPS is a qualitative and quantitative chemical analysis technique. It is surface-sensitive due to its limited sampling depth, which confines the analysis only to the outer few top-layers of the material surface. This enables researchers to understand the surface composition of the sample and how the chemistry influences its interaction with the environment. Although the chemical analysis remains the main information provided by XPS, modern instruments couple this information with spatial resolution and mapping or with the possibility to analyze the material in operando conditions at nearly atmospheric pressures. Examples of the application of photoelectron spectroscopies to the characterization of carbon nanostructures will be reviewed to present the potentialities of these techniques. 相似文献
62.
Gianluca Coppola Ilenia Corbelli Antonio Di Renzo Andrea Chiappiniello Pietro Chiarini Vincenzo Parisi Giorgio Guercini Paolo Calabresi Roberto Tarducci Paola Sarchielli 《The journal of headache and pain》2022,23(1)
IntroductionSeveral functional neuroimaging studies on healthy controls and patients with migraine with aura have shown that the activation of functional networks during visual stimulation is not restricted to the striate system, but also includes several extrastriate networks.MethodsBefore and after 4 min of visual stimulation with a checkerboard pattern, we collected functional MRI in 21 migraine with aura (MwA) patients and 18 healthy subjects (HS). For each recording session, we identified independent resting-state networks in each group and correlated network connection strength changes with clinical disease features.ResultsBefore visual stimulation, we found reduced connectivity between the default mode network and the left dorsal attention system (DAS) in MwA patients compared to HS. In HS, visual stimulation increases functional connectivity between the independent components of the bilateral DAS and the executive control network (ECN). In MwA, visual stimulation significantly improved functional connectivity between the independent component pairs salience network and DAS, and between DAS and ECN. The ECN Z-scores after visual stimulation were negatively related to the monthly frequency of aura.ConclusionsIn individuals with MwA, 4 min of visual stimulation had stronger cognitive impact than in healthy people. A higher frequency of aura may lead to a diminished ability to obtain cognitive resources to cope with transitory but important events like aura-related focal neurological symptoms. 相似文献
63.
64.
Laura Oggianu Giorgio Di Dato Giorgina Mangano Maria Teresa Rosignoli Savannah McFeely Alice Ban Ke Hannah M. Jones Alessandro Comandini 《CTS Clinical and Translational Science》2022,15(6):1417
Trazodone is approved for the treatment of major depressive disorders, marketed as immediate release (IR), prolonged release, and once a day (OAD) formulation. The different formulations allow different administration schedules and may be useful to facilitate patients’ compliance to the antidepressant treatment. A previously verified physiologically‐based pharmacokinetic model based on in vitro and in vivo information on trazodone pharmacokinetics was applied, aiming at predicting brain receptor occupancy (RO) after single and repeated dosing of the IR formulation and repeated dosing of the OAD formulation in healthy subjects. Receptors included in the simulations were selected using static calculations of RO based on the maximum unbound brain concentration (Cmax,brain,u) of trazodone for each formulation and dosing scheme, resulting in 16 receptors being simulated. Seven receptors were simulated for the IR low dose formulation (30 mg), with similar t onset and duration of coverage (range: 0.09–0.25 h and 2.1–>24 h, respectively) as well as RO (range: 0.64–0.92) predicted between day 1 and day 7 of dosing. The 16 receptors evaluated for the OAD formulation (300 mg) showed high RO (range: 0.97–0.84 for the receptors also covered by the IR formulation and 0.73–0.48 for the remaining) correlating with affinity and similar duration of time above the target threshold to the IR formulation (range: 2–>24 h). The dose‐dependent receptor coverage supports the multimodal activity of trazodone, which may further contribute to its fast antidepressant action and effectiveness in controlling different symptoms in depressed patients. Study Highlights
- WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
- WHAT QUESTION DID THIS STUDY ADDRESS?
- WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
- HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
65.
Cecilia Fazio Laura Daprai Arianna Neri Marcello Tirani Paola Vacca Milena Arghittu Luigina Ambrosio Danilo Cereda Maria Gramegna Annapina Palmieri Anna Carannante Maria Rosa Bertoli Lucia Crottogini Giorgio Gennati Eugenia Quinz Livia Trezzi Andrea Ciammaruconi Silvia Fillo Antonella Fortunato Giovanni Rezza Florigio Lista Paola Stefanelli 《Euro surveillance : bulletin européen sur les maladies transmissibles = European communicable disease bulletin》2022,27(24)
In Italy, serogroup C meningococci of the clonal complex cc11 (MenC/cc11) have caused several outbreaks of invasive meningococcal disease (IMD) during the past 20 years. Between December 2019 and January 2020, an outbreak of six cases of IMD infected with MenC/cc11 was identified in a limited area in the northern part of Italy. All cases presented a severe clinical picture, and two of them were fatal. This report is focused on the microbiological and molecular analysis of meningococcal isolates with the aim to reconstruct the chain of transmission. It further presents the vaccination strategy adopted to control the outbreak. The phylogenetic evaluation demonstrated the close genetic proximity between the strain involved in this outbreak and a strain responsible for a larger epidemic that had occurred in 2015 and 2016 in the Tuscany Region. The rapid identification and characterisation of IMD cases and an extensive vaccination campaign contributed to the successful control of this outbreak caused by a hyperinvasive meningococcal strain. 相似文献
66.
67.
68.
Chao Zhang Anurag Verma Yuanqing Feng Marcelo C. R. Melo Michael McQuillan Matthew Hansen Anastasia Lucas Joseph Park Alessia Ranciaro Simon Thompson Meagan A. Rubel Michael C. Campbell William Beggs Jibril Hirbo Sununguko Wata Mpoloka Gaonyadiwe George Mokone Regeneron Genetic Center Thomas Nyambo Dawit Wolde Meskel Gurja Belay Charles Fokunang Alfred K. Njamnshi Sabah A. Omar Scott M. Williams Daniel J. Rader Marylyn D. Ritchie Cesar de la Fuente-Nunez Giorgio Sirugo Sarah A. Tishkoff 《Proceedings of the National Academy of Sciences of the United States of America》2022,119(21)
Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses are enveloped, positive-sense, and single-stranded RNA viruses, many of which are zoonotic pathogens that crossed over into humans. Seven coronavirus species, including SARS-CoV-2, have been discovered that, depending on the virus and host physiological condition, may cause mild or lethal respiratory disease. There is considerable variation in disease prevalence and severity across populations and communities. Importantly, minority populations in the United States appear to have been disproportionally affected by COVID-19 (1, 2). For example, in Chicago, more than 50% of COVID-19 cases and nearly 70% of COVID-19 deaths are in African Americans (who make up 30% of the population of Chicago) (1). While social and economic factors are largely responsible for driving COVID-19 health disparities, investigating genetic diversity at host genes related to SARS-CoV-2 infection could help identify functionally important variation, which may play a role in individual risk for severe COVID-19 infection.In this study, we focused on four key genes playing a role in SARS-CoV-2 infection (3). The ACE2 gene, encoding the angiotensin-converting enzyme-2 protein, was reported to be a main binding site for severe acute respiratory syndrome coronavirus (SARS-CoV) during an outbreak in 2003, and evidence showed stronger binding affinity to SARS-CoV-2, which enters the target cells via ACE2 receptors (3, 4). The ACE2 gene is located on the X chromosome (chrX); its expression level varies among populations (5); and it is ubiquitously expressed in the lung, blood vessels, gut, kidney, testis, and brain, all organs that appear to be affected as part of the COVID-19 clinical spectrum (6). SARS-CoV-2 infects cells through a membrane fusion mechanism, which in the case of SARS-CoV, is known to induce down-regulation of ACE2 (7). Such down-regulation has been shown to cause inefficient counteraction of angiotensin II effects, leading to enhanced pulmonary inflammation and intravascular coagulation (7). Additionally, altered expression of ACE2 has been associated with cardiovascular and cerebrovascular disease, which is highly relevant to COVID-19 as several cardiovascular conditions are associated with severe disease. TMPRSS2, located on the outer membrane of host target cells, binds to and cleaves ACE2, resulting in activation of spike proteins on the viral envelope and facilitating membrane fusion and endocytosis (8). Two additional genes, DPP4 and LY6E, have been shown to play an important role in the entry of SARS-CoV-2 virus into host cells. DPP4 is a known functional receptor for the Middle East respiratory syndrome coronavirus (MERS-CoV), causing a severe respiratory illness with high mortality (9, 10). LY6E encodes a glycosylphosphatidylinositol-anchored cell surface protein, which is a critical antiviral immune effector that controls coronavirus infection and pathogenesis (11). Mice lacking LY6E in hematopoietic cells were susceptible to murine coronavirus infection (11).Previous studies of genetic diversity at ACE2 and TMPRSS2 in global human populations did not include an extensive set of African populations (5, 12–14). No common coding variants (defined here as minor allele frequency [MAF] > 0.05) at ACE2 were identified in any prior population studies. However, few studies included diverse indigenous African populations whose genomes harbor the greatest diversity among humans. This leads to a substantial disparity in the representation of African ancestries in human genetic studies of COVID-19, impeding health equity as the transferability of findings based on non-African ancestries to African populations can be low (15). Including more African populations in studying the genetic diversity of genes involved in SARS-CoV-2 infection is extremely necessary. Additionally, the evolutionary forces underlying global patterns of genetic diversity at host genes related to SARS-CoV-2 infection are not well understood. Using methods to detect natural selection signatures at host genes related to viral infections helps identify putatively functional variants that could play a role in disease risk.We characterized genetic variation and studied natural selection signatures at ACE2, TMPRSS2, DPP4, and LY6E in ethnically diverse human populations by analyzing 2,012 genomes from ethnically diverse Africans (referred to as the “African diversity” dataset), 2,504 genomes from the 1000 Genomes Project (1KG), and whole-exome sequencing of 15,977 individuals of European ancestry (EA) and African ancestry from the Penn Medicine BioBank (PMBB) dataset (SI Appendix, Fig. S1). The African diversity dataset includes populations with diverse subsistence patterns (hunter-gatherers, pastoralists, agriculturalists) and speaking languages belonging to the four major language families in Africa (Khoesan; Niger–Congo, of which Bantu is the largest subfamily; Afroasiatic; and Nilo-Saharan). We identify functionally relevant variation, compare the patterns of variation across global populations, and provide insight into the evolutionary forces underlying these patterns of genetic variation. In addition, we perform an association study using the variants identified from whole-exome sequencing at the four genes and clinical traits derived from electronic health record (EHR) data linked to the subjects enrolled in the PMBB. The EHR data include diseases related to organ dysfunctions associated with severe COVID-19, such as respiratory, cardiovascular, liver, and renal complications. Our study of genetic variation in genes involved in SARS-CoV-2 infection provides data to investigate infection susceptibility within and between populations and indicates that variants in these genes may play a role in comorbidities relevant to COVID-19 severity. 相似文献
69.
Cecilia Becattini Rupert Bauersachs Giorgio Maraziti Laurent Bertoletti Alexander Cohen Jean M. Connors Dario Manfellotto Antonio Sanchez Benjamin Brenner Giancarlo Agnelli 《Haematologica》2022,107(7):1567
The effect of renal impairment (RI) on risk of bleeding and recurrent thrombosis in cancer patients treated with direct oral anticoagulants for venous thromboembolism (VTE) is undefined. We ran a prespecified analysis of the randomized Caravaggio study to evaluate the role of RI as a risk factor for bleeding or recurrence in patients treated with dalteparin or apixaban for cancer-associated VTE. RI was graded as moderate (creatinine clearance between 30-59 mL/minute; 275 patients) and mild (between 60-89 mL/minute; 444 patients). In the 1142 patients included in this analysis, the incidence of major bleeding was similar in patients with moderate vs. no or mild RI (HR 1.06-95% CI: 0.53-2.11), with no difference in the relative safety of apixaban and dalteparin. Recurrent VTE was not different in moderate vs. no or mild RI (HR=0.67, 95% CI: 0.38-1.20); in moderate RI, apixaban reduced recurrent VTE compared to dalteparin (HR=0.27, 95% CI: 0.08-0.96; P for interaction 0.1085). At multivariate analysis, no association was found between variation of renal function over time and major bleeding or recurrent VTE. Advanced or metastatic cancer was the only independent predictor of major bleeding (HR=2.84, 95% CI: 1.20-6.71), with no effect of treatment with apixaban or dalteparin. In our study, in cancer patients treated with apixaban or dalteparin, moderate RI was not associated with major bleeding or recurrent VTE. In patients with moderate renal failure, the safety profile of apixaban was confirmed with the potential for improved efficacy in comparison to dalteparin. ClinicalTrials.gov identifier: . NCT03045406相似文献
70.