首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1357593篇
  免费   99559篇
  国内免费   2828篇
耳鼻咽喉   19197篇
儿科学   44582篇
妇产科学   39788篇
基础医学   197853篇
口腔科学   37509篇
临床医学   114997篇
内科学   269532篇
皮肤病学   28251篇
神经病学   107124篇
特种医学   53431篇
外国民族医学   386篇
外科学   209481篇
综合类   28073篇
现状与发展   1篇
一般理论   345篇
预防医学   97147篇
眼科学   30396篇
药学   104098篇
  4篇
中国医学   2977篇
肿瘤学   74808篇
  2018年   13897篇
  2016年   11803篇
  2015年   13655篇
  2014年   18610篇
  2013年   28011篇
  2012年   38503篇
  2011年   41031篇
  2010年   24504篇
  2009年   22904篇
  2008年   39315篇
  2007年   42366篇
  2006年   42641篇
  2005年   41767篇
  2004年   40526篇
  2003年   39331篇
  2002年   38885篇
  2001年   60574篇
  2000年   61898篇
  1999年   52558篇
  1998年   15123篇
  1997年   13548篇
  1996年   13730篇
  1995年   12925篇
  1994年   12307篇
  1993年   11363篇
  1992年   42099篇
  1991年   41450篇
  1990年   40815篇
  1989年   39626篇
  1988年   36910篇
  1987年   36082篇
  1986年   34451篇
  1985年   32797篇
  1984年   24427篇
  1983年   21257篇
  1982年   12687篇
  1981年   11200篇
  1979年   23029篇
  1978年   16139篇
  1977年   13989篇
  1976年   13194篇
  1975年   14499篇
  1974年   17043篇
  1973年   16417篇
  1972年   15623篇
  1971年   14513篇
  1970年   13470篇
  1969年   12977篇
  1968年   12219篇
  1967年   10705篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
43.
44.
ABSTRACT

Purpose

To investigate the expression of IL-11 and its receptor IL-11Rα and to quantify density of CD163+ M2 macrophages in proliferative diabetic retinopathy (PDR).  相似文献   
45.
46.
47.
48.
49.
50.
A 17‐year‐old boy presented with recurring severe dermatitis of the face of 5‐months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号