首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1063篇
  免费   96篇
  国内免费   4篇
耳鼻咽喉   7篇
儿科学   57篇
妇产科学   12篇
基础医学   123篇
口腔科学   43篇
临床医学   105篇
内科学   241篇
皮肤病学   2篇
神经病学   66篇
特种医学   71篇
外科学   222篇
综合类   17篇
预防医学   75篇
眼科学   5篇
药学   46篇
肿瘤学   71篇
  2022年   10篇
  2021年   21篇
  2020年   19篇
  2019年   27篇
  2018年   25篇
  2016年   18篇
  2015年   17篇
  2014年   32篇
  2013年   47篇
  2012年   47篇
  2011年   52篇
  2010年   25篇
  2009年   24篇
  2008年   48篇
  2007年   45篇
  2006年   34篇
  2005年   43篇
  2004年   35篇
  2003年   34篇
  2002年   28篇
  2001年   27篇
  2000年   31篇
  1999年   26篇
  1998年   13篇
  1996年   9篇
  1995年   9篇
  1993年   10篇
  1992年   16篇
  1991年   23篇
  1990年   15篇
  1989年   23篇
  1988年   19篇
  1987年   25篇
  1986年   19篇
  1985年   19篇
  1984年   12篇
  1983年   9篇
  1982年   11篇
  1979年   10篇
  1978年   13篇
  1977年   10篇
  1976年   10篇
  1974年   14篇
  1973年   9篇
  1972年   9篇
  1971年   10篇
  1970年   12篇
  1969年   14篇
  1967年   9篇
  1966年   11篇
排序方式: 共有1163条查询结果,搜索用时 0 毫秒
41.
Diploid and triploid rainbow trout weighing approximately 3 g were either fed for five weeks, or feed deprived for one week, followed by refeeding. During feed deprivation gastrointestinal somatic index decreased in diploids, but not triploids, and during refeeding, carcass growth rate recovered more quickly in triploids. Although not affected by ploidy, liver ghr2 and igfbp2b expression increased and igfbp1b decreased in fasted fish. Effects of ploidy on gene expression indicate potential mechanisms associated with improved recovery growth in triploids, which include decreased hepatic igfbp expression, which could influence IGF-I bioavailability, differences in tissue sensitivity to TGFbeta ligands due to altered tgfbr and smad expression, and differences in expression of muscle regulatory genes (myf5, mstn1a, and mstn1b). These data suggest that polyploidy influences the expression of genes critical to muscle development and general growth regulation, which may explain why triploid fish recover from nutritional insult better than diploid fish.  相似文献   
42.
43.
IgG antibodies against pneumococcal polysaccharides are found predominantly within IgG subclass 2. We wished to evaluate retrospectively IgG subclasses and post-immunization pneumococcal antibody titers in children with recurrent respiratory infections. We examined total immunoglobulin levels and IgG subclasses, as well as pneumococcal antibody titers against serotypes 3, 7F, 9N, and 14 present 4–6 weeks after pneumococcal immunization in 56 children 2–18 years old. Titers >200 ng Ab N/ml to any of the 4 serotypes tested were arbitrarily considered protective. Four patients did not have protective antibody levels against any of the 4 serotypes tested following vaccination. Of those, 3 had normal IgG subclass levels and 1 had an IgG2 subclass deficiency. Of 3 additional patients with IgG2 deficiency, 2 had protective antibody levels to only 1 serotype and 1 had protective antibody levels to 2 serotypes. Furthermore, in 2 patients with undetectable IgG2 at the time of immunization, the response was only transient. We conclude that patients with IgG2 deficiency may not develop protective antibody levels to all pneumococcal serotypes and that some may have deficient memory for IgG anti-pneumococcal polysaccharide antibodies. Pediatr Pulmonol. 1996; 22:167–173. © 1996 Wiley-Liss, Inc.  相似文献   
44.
Ataxia-telangiectasia mutated (ATM) plays a central role in DNA damage responses, and its loss leads to development of T-cell malignancies. Here, we show that ATM loss also leads to intrinsic mitochondrial abnormalities in thymocytes, including elevated reactive oxygen species, increased aberrant mitochondria, high cellular respiratory capacity, and decreased mitophagy. A fraction of ATM protein is localized in mitochondria, and it is rapidly activated by mitochondrial dysfunction. Unexpectedly, allelic loss of the autophagy regulator Beclin-1 significantly delayed tumor development in ATM-null mice. This effect was not associated with rescue of DNA damage signaling but rather with a significant reversal of the mitochondrial abnormalities. These data support a model in which ATM plays direct roles in modulating mitochondrial homeostasis and suggest that mitochondrial dysfunction and associated increases in mitochondrial reactive oxygen species contribute to the cancer-prone phenotype observed in organisms lacking ATM. Thus, ataxia-telangiectasia should be considered, at least in part, as a mitochondrial disease.  相似文献   
45.
Neurofilament gene expression: a major determinant of axonal caliber   总被引:33,自引:2,他引:33       下载免费PDF全文
Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. (The distal axonal stumps, which are disconnected from the cell bodies, degenerate and are replaced by the outgrowth of regenerating axonal sprouts arising from the proximal stump). This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), beta-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature of neuronal morphology with important consequences for physiology and behavior.  相似文献   
46.
Bile acids play a critical role in liver injury and regeneration, but their role in acetaminophen (APAP)–induced liver injury is not known. We tested the effect of bile acid modulation on APAP hepatotoxicity using C57BL/6 mice, which were fed a normal diet, a 2% cholestyramine (CSA)–containing diet for bile acid depletion, or a 0.2% cholic acid (CA)–containing diet for 1 week before treatment with 400 mg/kg APAP. CSA-mediated bile acid depletion resulted in significantly higher liver injury and delayed regeneration after APAP treatment. In contrast, 0.2% CA supplementation in the diet resulted in a moderate delay in progression of liver injury and significantly higher liver regeneration after APAP treatment. Either CSA-mediated bile acid depletion or CA supplementation did not affect hepatic CYP2E1 levels or glutathione depletion after APAP treatment. CSA-fed mice exhibited significantly higher activation of c-Jun N-terminal protein kinases and a significant decrease in intestinal fibroblast growth factor 15 mRNA after APAP treatment. In contrast, mice fed a 0.2% CA diet had significantly lower c-Jun N-terminal protein kinase activation and 12-fold higher fibroblast growth factor 15 mRNA in the intestines. Liver regeneration after APAP treatment was significantly faster in CA diet–fed mice after APAP administration secondary to rapid cyclin D1 induction. Taken together, these data indicate that bile acids play a critical role in both initiation and recovery of APAP-induced liver injury.Bile acids are versatile biological molecules that regulate energy homeostasis, activate nuclear receptors and cell signaling pathways, and control cell proliferation and inflammatory processes in the liver and gastrointestinal tract.1,2 Bile acids maintain their own homeostasis by activating a complex signaling network involving hepatic and intestinal farnesoid X receptor (FXR), small heterodimer partner, and intestinal fibroblast growth factor (FGF) 15 (FGF19 in human) expression, culminating in inhibition of the primary bile acid–synthesizing enzyme, CYP7A1.3–6 Although bile acids are potent signaling molecules at pathophysiological concentrations, they cause apoptosis, necrosis, and oxidative stress.3,7–10 Bile acids have also been implicated in stimulation of liver regeneration.11–14 Studies in recent years indicate that the bile acid–mediated gut-liver signaling axis may play a critical role in regulation of liver homeostasis.6,15,16Acetaminophen (APAP) is the most commonly used analgesic and antipyretic agent.17 An overdose of APAP is the major cause of acute liver failure in the United States.18,19 The mechanisms of APAP-induced liver injury and subsequent liver regeneration are the focus of intense investigation.20–22 In an overdose situation, excess APAP is mainly metabolized by CYP2E1 to a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). In hepatocytes, conjugation of NAPQI to GSH is the key mechanism for detoxification of NAPQI. Once the GSH is depleted, NAPQI attacks cellular proteins, especially mitochondrial proteins, to form protein adducts. This triggers a cascade of intracellular signaling events involving c-Jun N-terminal protein kinase (JNK) activation and mitochondrial permeability transition, finally culminating in necrotic cell death.20 Liver injury is followed by compensatory liver regeneration, which is a critical determinant of final outcome of liver injury.23 Despite decades of research, how these intracellular events are affected by extracellular signaling is not known.The current study was designed to explore the role of bile acids in initiation of liver injury and stimulation of liver regeneration after APAP overdose. These studies are highly significant because the data reveal a novel role of bile acids in cellular protection and liver regeneration after APAP overdose, and these studies investigate the effect of resin-mediated bile acid depletion, a commonly used therapy, on APAP toxicity.  相似文献   
47.
We compare a chest radiographic scoring system developed by our group to spirometry in quantifying the longitudinal progression of lung disease among cystic fibrosis (CF) patients, and we evaluate the use of this radiographic scoring system in identifying the treatment effect of an inhaled antibiotic. Results suggest that longitudinally acquired chest radiographs, when scored using our scoring system, are at least as sensitive as lung function in detecting the progression of lung disease in CF patients.  相似文献   
48.
Tumour necrosis factor-alpha (TNF-alpha) is an autocrine contributor to myocardial dysfunction and cardiomyocyte death in ischaemia-reperfusion injury (I/R), sepsis, chronic heart failure and cardiac allograft rejection. Cardiac resident macrophages, infiltrating leucocytes, and cardiomyocytes themselves produce TNF-alpha. Although adenosine reduces macrophage TNF-alpha production and protects myocardium against I/R, it remains unknown whether I/R induces an increase in cardiac TNF-alpha in a crystalloid-perfused model (in the absence of blood), and, whether adenosine decreases cardiac TNF-alpha and protects function after I/R. To study this, isolated rat hearts were crystalloid-perfused using the Langendorff method and subjected to I/R, with or without adenosine pretreatment. Post-ischaemic cardiac TNF-alpha (enzyme-linked immunosorbent assay and bioassay) and function were determined (Langendorff). I/R increased cardiac TNF-alpha and impaired myocardial function. Adenosine decreased cardiac TNF-alpha and improved post-ischaemic functional recovery. This study demonstrates that: first, I/R induces an increase in cardiac tissue TNF-alpha in a crystalloid-perfused model: second, adenosine decreases cardiac TNF-alpha and improves post-ischaemic myocardial function; third, decreased cardiac TNF-alpha may represent a mechanism by which adenosine protects myocardium; and fourth, adenosine-induced suppression of cardiac TNF-alpha may provide an anti-inflammatory link to preconditioning and have implications for cardiac allograft preservation.  相似文献   
49.
Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. The pathophysiology is likely secondary to innate immune responses to intestinal microbiota by the premature infant''s intestinal tract, leading to inflammation and injury. This review provides an updated summary of the components of the innate immune system involved in NEC pathogenesis. In addition, we evaluate the animal models that have been used to study NEC with regard to the involvement of innate immune factors and histopathological changes as compared to those seen in infants with NEC. Finally, we discuss new approaches to studying NEC, including mathematical models of intestinal injury and the use of humanized mice.Necrotizing enterocolitis (NEC) is a disorder characterized by intestinal necrosis in premature infants that results in significant morbidity and mortality.1 Approximately 7% of infants with a birth weight between 500 and 1500 g develop NEC.1 The pathogenesis is characterized by intestinal inflammation that can progress to systemic infection/inflammation, multiorgan failure, and death. The bowel is distended and hemorrhagic on gross inspection. On microscopic examination, signs of inflammation, mucosal edema, epithelial regeneration, bacterial overgrowth, submucosal gas bubbles, and ischemic transmural necrosis are seen (Figure 1, A–E).2Open in a separate windowFigure 1Examples of the various grades of morphological damage in hematoxylin and eosin–stained specimens. A–E: Representative samples of premature infants with necrotizing enterocolitis. A: Age-matched control from patient with jejunal atresia. B: Mild injury with hemorrhagic necrosis of mucosa and loss of villus tip architecture. C: Progressive injury with inflammatory infiltration of muscularis with complete villus destruction. D: Severe muscular and epithelial damage with complete loss of mucosa. E: Perforation with transmural necrosis with complete loss of epithelial and muscular architecture. F–J: Representative samples from intestinal injury secondary to gavage feeding in the setting of hypothermia and hypoxia in neonatal rats. F: Intact morphology, grade 0. G: Sloughing of villus tips, grade 1. H: Mid-villus necrosis, grade 2. I: Loss of villi, grade 3. J: Complete destruction of the mucosa, grade 4. Insets in F–J show higher magnified portions of the same sections, corresponding to the boxed regions. K–O: Representative images of tissue injury secondary to 60 minutes of intestinal ischemia and 90 minutes of reperfusion in 2-week-old mice. K: Sham-operated mice (no ischemia). L: Villus tip necrosis. M: Mid-villus necrosis. N: Loss of villus architecture. O: Complete loss of mucosal architecture. F–J, reprinted with permission from Nature Publishing Group.28 Scale bars = 50 μm (A–E, K–O). Original magnification, ×20 (A–O, main images, and F–J, insets).Currently the pathogenesis of NEC is believed to have multifactorial causes, including intestinal immaturity and microbial dysbiosis. Intestinal immaturity leads to a compromised intestinal epithelial barrier, an underdeveloped immune defense, and altered vascular development and tone. The compromised epithelial barrier and underdeveloped immune system, when exposed to luminal microbiota that have been shaped by formula feedings, antibiotic exposure, and Cesarean delivery, can lead to intestinal inflammation and sepsis. Despite therapeutic success in animal model systems, there are relatively few therapeutic strategies that have allowed for significantly improved outcomes in infants with NEC. Two hurdles that persist are our incomplete understanding of the developing immune system in premature infants and our inability to adequately replicate these complex factors in animal models.3,4 This review summarizes the complex intestinal immune system in premature infants and details what is known about the involvement of innate immune factors in NEC, both in animal models and in human disease.  相似文献   
50.
Though the coexistence of nephrolithiasis and cholelithiasis in premature infants is extremely rare, we report four patients seen in a two year period. All patients weighed less than 1100 grams at birth, developed severe bronchopulmonary dysplasia, and all had Grade III or IV bilateral intraventricular hemorrhages. All four infants received prolonged furosemide therapy lasting at least 28 consecutive days. The renal stones disappeared in all four upon cessation of therapy, while in none have the gallstones disappeared after a mean follow-up period of 13 months. Ultrasound was superior in identifying and monitoring these stones. Their presence resulted in manipulating diuretic therapy which then was shown to limit renal and possibly biliary complications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号