Paroxysmal kinesigenic dyskinesia is an episodic movement disorder caused by dominant mutations in the proline-rich transmembrane protein PRRT2, with onset in childhood and typically with improvement or resolution by middle age. Mutations in the same gene may also cause benign infantile seizures, which begin in the first year of life and typically remit by the age of 2 years. Many details of PRRT2 function at the synapse, and the effects of mutations on neuronal excitability in the pathophysiology of epilepsy and dyskinesia, have emerged through the work of several groups over the last decade. However, the age dependence of the phenotypes has not been explored in detail in transgenic models. Here, we report our findings in heterozygous and homozygous Prrt2 knockout mice that recapitulate the age dependence of dyskinesia seen in the human disease. We show that Prrt2 deletion reduces the levels of synaptic proteins in a dose-dependent manner that is most pronounced at postnatal day 5 (P5), attenuates at P60, and disappears by P180. In a test for foot slippage while crossing a balance beam, transient loss of coordination was most pronounced at P60 and less prominent at age extremes. Slower traverse time was noted in homozygous knockout mice only, consistent with the ataxia seen in rare individuals with biallelic loss of function mutations in Prrt2. We thus identify three age-dependent phenotypic windows in the mouse model, which recapitulate the pattern seen in humans with PRRT2-related diseases.
We present a SMART injector with two parallel common-path optical coherence tomography fibers to enable angle measurements and injection depth corrections for oblique subretinal injection. The two optical fibers are attached to opposite sides of a 33 G needle with known offsets and designed to pass through a 23 G trocar that has an inner diameter of 0.65 mm. By attaching a SMART system to a rotational stage, the measured angles are calibrated for minimal error from reference angles. A commercial eye model was used to evaluate the control performance, and injection experiments were performed on a phantom made of agarose gel and a porcine eye. 相似文献
The aims of this study were to compare opening and closing angles of normally functioning mechanical aortic valves measured on dual-source computed tomography (CT) with the manufacturers'' values and to compare CT-measured opening angles according to valve function.
Materials and Methods
A total of 140 patients with 10 different types of mechanical aortic valves, who underwent dual-source cardiac CT, were included. Opening and closing angles were measured on CT images. Agreement between angles in normally functioning valves and the manufacturer values was assessed using the interclass coefficient and the Bland-Altman method. CT-measured opening angles were compared between normal functioning valves and suspected dysfunctioning valves.
Results
The CT-measured opening angles of normally functioning valves and manufacturers'' values showed excellent agreement for seven valve types (intraclass coefficient [ICC], 0.977; 95% confidence interval [CI], 0.962-0.987). The mean differences in opening angles between the CT measurements and the manufacturers'' values were 1.2° in seven types of valves, 11.0° in On-X valves, and 15.5° in ATS valves. The manufacturers'' closing angles and those measured by CT showed excellent agreement for all valve types (ICC, 0.953; 95% CI, 0.920-0.972). Among valves with suspected dysfunction, those with limitation of motion (LOM) and an increased pressure gradient (PG) had smaller opening angles than those with LOM only (p < 0.05).
Conclusion
Dual-source cardiac CT accurately measures opening and closing angles in most types of mechanical aortic valves, compared with the manufacturers'' values. Opening angles on CT differ according to the type of valve dysfunction and a decreased opening angle may suggest an elevated PG. 相似文献
Continuous nationwide surveillance of invasive pneumococcal disease (IPD) was conducted in Germany. From July 1, 1997, to June 30, 2013, data on penicillin susceptibility were available for 20,437 isolates. 2,790 of these isolates (13.7 %) originate from patients with meningitis and 17,647 isolates (86.3 %) are from non-meningitis cases. A slight decline in isolates susceptible at 0.06 and 0.12 μg/ml can be noticed over the years. Overall, 89.1 % of the isolates had minimum inhibitory concentrations (MICs) of ≤0.015 μg/ml. In 2012/2013, the first three isolates of Streptococcus pneumoniae with MICs of 8 μg/ml were found. The application of different guidelines with other MIC breakpoints for the interpretation of penicillin resistance leads to differences in susceptibility categorisation. According to the pre-2008 Clinical and Laboratory Standards Institute (CLSI) interpretive criteria, 5.3 % of isolates overall were intermediate and 1.4 % were resistant to penicillin. Application of the 2008–2014 CLSI interpretive criteria resulted in 7.6 % resistance among meningitis cases and 0.5 % intermediate resistance in non-meningitis cases. Referring to the 2009–2014 European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints, 7.6 % of the isolates in the meningitis group were resistant to penicillin. In the non-meningitis group, 6.1 % of the isolates were intermediate and 0.5 % were resistant. These differences should be kept in mind when surveillance studies on pneumococcal penicillin resistance are compared. 相似文献
Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell‐based vaccine, but the narrow breadth of T‐cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T‐cell immunodominance hierarchy in humans in an experimental setting, influenza‐primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN‐γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T‐cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV‐NP + PA showed improved protection. Taken together, a vaccinia‐based influenza vaccine expressing conserved internal proteins improved the breadth of influenza‐specific T‐cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. 相似文献