首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   9篇
  国内免费   3篇
耳鼻咽喉   3篇
儿科学   13篇
妇产科学   5篇
基础医学   11篇
口腔科学   2篇
临床医学   29篇
内科学   29篇
皮肤病学   3篇
神经病学   4篇
特种医学   18篇
外科学   34篇
综合类   17篇
预防医学   14篇
药学   19篇
肿瘤学   10篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   5篇
  2011年   8篇
  2010年   9篇
  2009年   12篇
  2008年   10篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   18篇
  1997年   15篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有211条查询结果,搜索用时 46 毫秒
201.
mRNA差异显示法筛选和克隆胎肝中差异表达基因   总被引:1,自引:1,他引:0  
张俊杰  陈南春  陈苏民 《医学争鸣》2000,21(12):S242-S242
0 引言 胎肝正处于生长发育阶段 ,其中表达的一些基因在成人肝脏中处于关闭状态 ,当成人肝脏部分切除或肝细胞广泛受损时 ,剩余肝细胞表现出很强的再生能力 ,再生成年肝脏和肝癌细胞中都出现有发育早期基因的表达 [1 ] .克隆这类胎肝中差异表达的基因 ,将有助于了解肝脏的发育过程 ,并为肝脏再生及肝脏相关疾病的研究提供线索 .1 材料和方法1.1 材料 胎肝和成人肝组织分别由西京医院妇产科和肝胆外科提供 .差示 PCR引物为 5′端 10碱基随机引物 I(RPI) :5′- AGCCACCATG- 3′ ;5′端 10碱基随机引物 II(RPII) :5′- TAGCAG…  相似文献   
202.
203.
From September 1992 to January 1994, we evaluated the use of the CEPRATE SC stem cell concentrator (CellPro, Inc, Bothell, WA) to select CD34+ cells from the bone marrow (BM) of 25 patients with non-Hodgkin's lymphoma in complete remission. This system uses the biotinylated 12.8 IgM MoAb to select CD34+ cells. Cells are retained on an avidin column and detached by agitation. Fifteen patients have been transplanted with the CD34+ purified fraction. The CD34+ purified fraction of the 25 processed BMs contained a median of 0.54% of the original nucleated cells in a volume of 5 to 10 mL. The median concentration of CD34+ cells was 49% (range, 12% to 80%), and the median enrichment of CD34+ cells was 33-fold (range, 9- to 85-fold). This selected CD34+ fraction retained 60% (range, 15% to 95%) of late granulocyte-macrophage colony- forming units (CFU-GM), 55% (range, 12% to 99%) of early CFU-GM, and 31% (range, 2% to 100%) erythroid burst-forming units (BFU-E) corresponding to median enrichments of 22-fold (range, 1- to 71-fold), 19-fold (range, 2- to 58-fold), and 14-fold (range, 2- to 200-fold), respectively. There was a correlation between immune phenotypes and progenitor cells. In the initial buffy-coat fractions, the percentage of CD34+ cells was correlated to the cloning efficiency of both late CFU-GM (P < .05) and early CFU-GM (P < .001). In the final selected fraction, there was a correlation between the percentage of CD34+/CD33- and the cloning efficiency of early CFU-GM (P < .05) and between the percentage of CD34+/CD33+ and the cloning efficiency of late CFU-GM (P < .05). Lymphoma cells positive for t(14; 18) were found by polymerase chain reaction in 9 of 14 buffy coats tested before CD34+ cell purification. In 8 cases, the CD34(+)-selected fraction was found to be negative, and the CD34- fraction was found to be positive. After cryopreservation, the recoveries of progenitor cells in the CD34(+)- purified fraction were 79% for late CFU-GM, 71% for early CFU-GM, and 73% for BFU-E. The 15 patients transplanted with the concentrated CD34+ fraction received a median dose of 1 x 10(6) CD34+ cells/kg (range, 0.3 to 2.96) and 10.62 x 10(4) early CFU-GM/kg (range, 0.92 to 25.55). Median days to recovery to 0.5 x 10(9)/L neutrophils and 50 x 10(9)/L platelets were days 15 (range, 10 to 33) and 23 (range, 11 to 68), respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
204.
205.
Recombinant human erythropoietin (rHuEPO) stimulates erythropoietic bone marrow cells and increases erythrocyte production. This prospective study was designed to evaluate the effects of rHuEPO on regeneration of erythropoiesis after allogeneic or autologous bone marrow transplantation (BMT). Seventeen centers participated in this randomized, double-blind, placebo-controlled multicenter trial. The randomization was performed centrally for each center and stratified according to allogeneic or autologous BMT and major ABO-blood group incompatibility. One hundred and six patients received rHuEPO after allogeneic BMT and 109 patients received placebo. After autologous BMT, 57 patients were treated with rHuEPO and 57 with placebo. Patients received either 150 IU/kg/day C127 mouse-cell-derived rHuEPO or placebo as continuous intravenous infusion. Therapy started after bone marrow infusion and lasted until independence from erythrocyte transfusions for 7 consecutive days with stable hemoglobin levels > or = 9 g/100 mL or until day 41. After allogeneic BMT, the reticulocyte counts were significantly higher with rHuEPO from day 21 to day 42 after BMT. The median time (95% confidence intervals) to erythrocyte transfusion independence was 19 days (range, 16.3 to 21.6) with rHuEPO and 27 days (range, 22.3 to > 42) with placebo (P < .003). The mean (+/- SD) numbers of erythrocyte transfusions until day 20 after BMT were 6.6 +/- 4.8 with rHuEPO and 6.0 +/- 3.8 with placebo. However, from day 21 to day 41, the rHuEPO-treated patients received 1.4 +/- 2.5 (median, 0) transfusions and the control group received 2.7 +/- 4.0 (median, 2) transfusions (P = .004). In the follow-up period from day 42 up to day 100, 2.4 +/- 5.6 transfusions were required with rHuEPO and 4.5 +/- 9.6 were required with placebo (P = .075). A multivariate analysis (ANOVA) showed that acute graft-versus-host disease (GVHD), major ABO-blood group incompatibility, age greater than 35 years, and hemorrhage significantly increased the number of transfusions. However, after day 20, rHuEPO significantly reduced the number of erythrocyte transfusions in these patient groups, as well as reducing incompatibility in the major ABO-blood group. For the whole study period, rHuEPO reduced the transfusion requirements in GVHD III and IV from 18.4 +/- 8.6 to 8.5 +/- 6.8 U (P = .05). After autologous BMT, there was no difference in the time to independence from erythrocyte transfusions and in the regeneration of reticulocytes. Marrow purging strongly increased the requirement for transfusions as well as the time to transfusion independence.  相似文献   
206.
IntroductionAs evidence-based effective treatment protocols for delirium after cardiac surgery are lacking, efforts should be made to identify risk factors for preventive interventions. Moreover, knowledge of these risk factors could increase validity of etiological studies in which adjustments need to be made for confounding variables. This review aims to systematically identify risk factors for delirium after cardiac surgery and to grade the evidence supporting these associations.MethodA prior registered systematic review was performed using EMBASE, CINAHL, MEDLINE and Cochrane from 1990 till January 2015 (http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42014007371). All studies evaluating patients for delirium after cardiac surgery with cardiopulmonary bypass (CPB) using either randomization or multivariable data analyses were included. Data was extracted and quality was scored in duplicate. Heterogeneity impaired pooling of the data; instead a semi-quantitative approach was used in which the strength of the evidence was graded based on the number of investigations, the quality of studies, and the consistency of the association reported across studies.ResultsIn total 1462 unique references were screened and 34 were included in this review, of which 16 (47 %) were graded as high quality. A strong level of evidence for an association with the occurrence of postoperative delirium was found for age, previous psychiatric conditions, cerebrovascular disease, pre-existent cognitive impairment, type of surgery, peri-operative blood product transfusion, administration of risperidone, postoperative atrial fibrillation and mechanical ventilation time. Postoperative oxygen saturation and renal insufficiency were supported by a moderate level of evidence, and there is no evidence that gender, education, CPB duration, pre-existent cardiac disease or heart failure are risk factors.ConclusionOf many potential risk factors for delirium after cardiac surgery, for only 11 there is a strong or moderate level of evidence. These risk factors should be taken in consideration when designing future delirium prevention strategies trials or when controlling for confounding in future etiological studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13054-015-1060-0) contains supplementary material, which is available to authorized users.  相似文献   
207.
Douay  L; Hu  C; Giarratana  MC; Bouchet  S; Conlon  J; Capizzi  RL; Gorin  NC 《Blood》1995,86(7):2849-2855
One of the principal challenges of cancer chemotherapy is the relative inability of most anticancer drugs to distinguish between normal and neoplastic tissues. Consequently, a broad range of toxicities are experienced by patients, especially myelosuppression. Amifostine, a phosphorylated aminothiol, increases the selectivity of specific anticancer drugs for neoplastic cells by protecting normal tissues. One potential application of this protector is during bone marrow purging to selectively remove contaminating cancer cells. This study took normal or leukemic marrow from human subjects and evaluated the ability of amifostine to selectively protect normal bone marrow progenitor cells versus leukemic progenitor cells from the cytotoxic effect of mafosfamide. The dose response of mafosfamide amifostine on leukemia colony-forming units or normal marrow progenitor cells was determined and the LD95 was calculated. Amifostine pretreatment resulted in a statistically significant protection of granulocyte-macrophage colony- forming units and erythroid blast-forming units from the toxicity of mafosfamide (P = .031). Thus, amifostine protection of normal marrow progenitor cells allows a higher LD95 concentration of mafosfamide to be used in ex vivo purging. In contrast, amifostine pretreatment increased the cytotoxicity of mafosfamide on the fresh human leukemia progenitor cells (P = .006). The dual effect of amifostine protection of normal marrow progenitor cells coupled with amifostine-induced sensitization of the leukemia cells increases the possible cell-kill of leukemic stem cells. With amifostine pretreatment, at the LD95 concentrations of mafosfamide for marrow progenitor cells, there was an estimated 6 log increase in cell-kill of the leukemia cells. This selective cell-kill offers the potential for lowering the incidence of leukemic relapse, while preserving more normal stem cells for autologous transplantation.  相似文献   
208.
Bambakidis NC  Selman WR 《Journal of neurosurgery》2012,116(3):636-7; discussion 637
  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号