首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2210篇
  免费   140篇
  国内免费   4篇
耳鼻咽喉   22篇
儿科学   23篇
妇产科学   17篇
基础医学   476篇
口腔科学   21篇
临床医学   271篇
内科学   578篇
皮肤病学   34篇
神经病学   224篇
特种医学   33篇
外科学   205篇
综合类   4篇
预防医学   96篇
眼科学   28篇
药学   197篇
中国医学   2篇
肿瘤学   123篇
  2023年   17篇
  2022年   113篇
  2021年   156篇
  2020年   61篇
  2019年   66篇
  2018年   72篇
  2017年   50篇
  2016年   55篇
  2015年   96篇
  2014年   84篇
  2013年   78篇
  2012年   160篇
  2011年   177篇
  2010年   93篇
  2009年   69篇
  2008年   128篇
  2007年   98篇
  2006年   99篇
  2005年   94篇
  2004年   83篇
  2003年   77篇
  2002年   78篇
  2001年   22篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   14篇
  1994年   6篇
  1992年   12篇
  1991年   10篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   14篇
  1983年   8篇
  1981年   7篇
  1979年   16篇
  1976年   5篇
  1975年   11篇
  1974年   8篇
  1973年   12篇
  1972年   10篇
  1971年   8篇
  1970年   5篇
  1969年   11篇
  1968年   10篇
  1965年   5篇
排序方式: 共有2354条查询结果,搜索用时 15 毫秒
61.
It has been shown by a set of corrosion, electrochemical and physical methods that a chamber corrosion inhibitor that consists of a mixture of octadecylamine (ODA) and benzotriazole (BTA) efficiently protects copper and brass from atmospheric corrosion and can be used for the temporary protection of metal items. The optimum temperatures of treatment with the ODA + BTA mixed inhibitor is 120 °C for brass and 100 °C for copper. One-hour treatment in ODA + BTA vapors at these temperatures results in the formation of nanosized adsorption films on the surface of these metals. These films stabilize the passive state and provide efficient temporary protection of metal items. The ODA + BTA inhibitor is superior to its components in terms of protective aftereffect. Our analysis of the mutual effect of BTA and ODA indicated that they show an antagonism of protective action on copper, but there is also a synergistic enhancement in the case of brass. Electrochemical impedance spectroscopy studies demonstrate that the inhibitors in question mainly act by using a blocking mechanism on copper and brass. Chamber treatment of the metals studied in vapors of the ODA + BTA mixture resulted in a noticeable hydrophobization of the copper surface and an insignificant effect on the brass surface. Chamber treatment of copper samples with artificially created polymodal roughness made it possible to obtain a superhydrophobic surface.  相似文献   
62.
The commercial purity of VT1-0 titanium was processed by the rolling process and executed at elevated, room, and cryo-temperatures. These processings led to the formation of an ultrafine-grained microstructure, with the mean grain size at a nanometer level. Some of these materials were statically annealed at a temperature of 823 K for 1 h, which led to significant subgrains and grain coarsening. The constant load creep tests in tension were carried out in argon on all states of materials, at temperatures of 648–723 K and different ranges of applied stresses. From the value of the steady-state creep rate, the control creep mechanisms were determined. The microstructure analyses were carried out via SEM and TEM. It was found that titanium prepared at elevated and room temperatures have a higher creep strength than titanium prepared at cryo-temperatures. Furthermore, the post-SPD —annealing led to a significant decrease in the creep properties. The influence of the preparation temperature on the difference of the creep behavior were discussed and explained using the microstructure analyses of the tests’ samples.  相似文献   
63.
The chemical stability and hydrophobic nature of chloroarenes make them a persistent environmental hazard. Modeling of 1,2,4-trichlorobenzene (1,2,4-TCB) degradation in alcohol-water solution under UV irradiation was carried out with the aim of probing how the 1,2,4-TCB might behave in the environment. The photocatalytic activity of both bare TiO2 and TiO2 doped by colloidal CdS nanoparticles synthesized by the sol-gel method has been investigated in the processes of 1,2,4-TCB photodegradation in the aqueous protic solvent. Non-sensitized TiO2 cannot be regarded as catalyst for the 1,2,4-TCB photodecomposition. On the contrary, the CdS/TiO2 composite accelerated the 1,2,4-TCB photodegradation process. The concentration of CdS/TiO2 was shown to effect on the 1,2,4-TCB photolysis mechanisms, which resulted in the quantitative ratios of the 1,2,4-TCB photolysis products.  相似文献   
64.
65.
66.
Programmed cell death (PCD) is indispensable for eukaryotic development. In animals, PCD is executed by the caspase family of cysteine proteases. Plants do not have close homologues of caspases but possess a phylogenetically distant family of cysteine proteases named metacaspases. The cellular function of metacaspases in PCD is unknown. Here we show that during plant embryogenesis, metacaspase mcII-Pa translocates from the cytoplasm to nuclei in terminally differentiated cells that are destined for elimination, where it colocalizes with the nuclear pore complex and chromatin, causing nuclear envelope disassembly and DNA fragmentation. The cell-death function of mcII-Pa relies on its cysteine-dependent arginine-specific proteolytic activity. Accordingly, mutation of catalytic cysteine abrogates the proteolytic activity of mcII-Pa and blocks nuclear degradation. These results establish metacaspase as an executioner of PCD during embryo patterning and provide a functional link between PCD and embryogenesis in plants. Although mcII-Pa and metazoan caspases have different substrate specificity, they serve a common function during development, demonstrating the evolutionary parallelism of PCD pathways in plants and animals.  相似文献   
67.
The question of the microscopic origin of the M-superstructure and additional satellite peaks in the Zr-rich lead zirconate-titanate is discussed for nearly 50 years. Clear contradiction between the selection rules of the critical scattering and the superstructure was found preventing unambiguous attributing of the observed superstructure either to the rotation of the oxygen octahedra or to the antiparallel displacements of the lead cations. Detailed analysis of the satellite pattern explained it as the result of the incommensurate phase transition rather than antiphase domains. Critical dynamics is the key point for the formulated problems. Recently, the oxygen tilt soft mode in the PbZr0.976Ti0.024O3 (PZT2.4) was found. But this does not resolve the extinction rules contradiction. The results of the inelastic X-ray scattering study of the phonon spectra of PZT2.4 around M-point are reported. Strong coupling between the lead and oxygen modes resulting in mode anticrossing and creation of the wide flat part in the lowest phonon dispersion curves is identified. This flat part corresponds to the mixture of the displacements of the lead and oxygen ions and can be an explanation of the extinction rules contradiction. Moreover, a flat dispersion surface is a typical prerequisite for the incommensurate phase transition.  相似文献   
68.
Defining the structural and functional changes in the nervous system underlying learning and memory represents a major challenge for modern neuroscience. Although changes in neuronal activity following memory formation have been studied [B. F. Grewe et al., Nature 543, 670–675 (2017); M. T. Rogan, U. V. Stäubli, J. E. LeDoux, Nature 390, 604–607 (1997)], the underlying structural changes at the synapse level remain poorly understood. Here, we capture synaptic changes in the midlarval zebrafish brain that occur during associative memory formation by imaging excitatory synapses labeled with recombinant probes using selective plane illumination microscopy. Imaging the same subjects before and after classical conditioning at single-synapse resolution provides an unbiased mapping of synaptic changes accompanying memory formation. In control animals and animals that failed to learn the task, there were no significant changes in the spatial patterns of synapses in the pallium, which contains the equivalent of the mammalian amygdala and is essential for associative learning in teleost fish [M. Portavella, J. P. Vargas, B. Torres, C. Salas, Brain Res. Bull. 57, 397–399 (2002)]. In zebrafish that formed memories, we saw a dramatic increase in the number of synapses in the ventrolateral pallium, which contains neurons active during memory formation and retrieval. Concurrently, synapse loss predominated in the dorsomedial pallium. Surprisingly, we did not observe significant changes in the intensity of synaptic labeling, a proxy for synaptic strength, with memory formation in any region of the pallium. Our results suggest that memory formation due to classical conditioning is associated with reciprocal changes in synapse numbers in the pallium.

It is widely believed that memories are formed as a result of alterations in synaptic connections between axons and dendrites, an idea first proposed by Ramon y Cajal (14). Although synapse changes have been extensively studied in brain slices in the context of long-term potentiation (5, 6), less is known about how synapses in a living vertebrate are modified when a memory is formed.Memory formation has been widely studied using classical conditioning (CC), a robust and straightforward form of learning in which an animal is exposed to a neutral stimulus (conditioned stimulus, CS) paired with an appetitive or aversive stimulus (unconditioned stimulus, US) that evokes a specific behavioral response (UR, unconditioned response) (7, 8). As a result of the pairing, animals learn to associate the CS with the US, causing them to respond to the CS with a conditioned response (CR) identical to the UR, signifying memory retrieval (9, 10). Memory retrieval is also evoked by activating a cellular engram, a group of neurons active during memory formation and retrieval (1118). The central locus of CC in mammals, the amygdala (19), is located in a relatively inaccessible area beneath the cortex (20). Thus, although numerous longitudinal imaging studies have documented experience-dependent changes in the structure of spines of cortical and hippocampal neurons (21, 22), few imaging studies have directly examined synaptic changes that occur in the amygdala during associative memory formation.Instead, synaptic changes that occur in the amygdala during CC (23) have been studied primarily using indirect measures of synaptic strength, such as the ratio of α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor/N-methyl D-aspartate (AMPA/NMDA) currents in excitatory postsynaptic currents (EPSCs). Increases in AMPA/NMDA ratio in amygdalar neurons following auditory fear conditioning (FC), a type of CC (2427), indicate that associative memory formation coincides with increases in synaptic strength. In addition, imaging experiments in brain regions beyond the amygdala have shown diverse effects following CC. For example, following contextual fear conditioning, engram neurons in the CA1 region of the hippocampus that receive inputs from CA3 engram neurons displayed spines that were larger and more densely packed than nonengram cells (28). Furthermore, experiments in which neuronal morphology was directly observed before and after FC found that neurons in the frontal association (29) and primary motor cortex (30) showed a decrease in the number of spines, whereas neurons in the auditory cortex showed an increase in spine number with memory formation (31).To obtain previously unavailable insight into memory formation within the central locus of associative memory storage, we developed a paradigm combining in vivo labeling and imaging with informatics and analysis tools. We used this paradigm to map synaptic changes that occur over time in the intact brain of a living vertebrate during memory formation. We imaged the pallium of teleost fish, which contains the putative homolog of the mammalian amygdala based on anatomy (32), gene expression (33), and function (34). The pallium is on the surface of the brain (35), and zebrafish larvae are highly transparent, allowing for intact, whole-brain imaging using selective plane illumination microscopy (SPIM) without the need for invasive intervention (36). In addition, while most studies of learning in zebrafish have used adults (3740), at least one study showed that larval zebrafish can learn to associate a place with a positive valence US (41). These attributes suggest that larval zebrafish may be an ideal model organism for studying synaptic changes during memory formation due to CC. We have engaged this challenge by combining purpose-built experimental tools with data management software that enables transparent analyses of large and heterogeneous datasets. All data were characterized and stored at the time of creation in a customized data management system designed to conform to findability, accessibility, interoperability, and reusability (i.e., FAIR principles) (see Materials and Methods) (42).  相似文献   
69.
The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.  相似文献   
70.
The African swine fever virus (ASFV) is the cause of a recent pandemic that is threatening the global pig industry. The virus infects domestic and wild pigs and manifests with a variety of clinical symptoms, depending on the strain. No commercial vaccine is currently available to protect animals from this virus, but some attenuated and recombinant live vaccine candidates might be effective against the disease. This article describes the immunobiological characteristics of one such candidate—the laboratory-attenuated ASFV strain, Katanga-350—which belongs to genotype I. In this study, we assessed clinical signs and post-mortem changes, the levels of viremia and the presence of viral DNA caused by injection of ASF virus strains Katanga-350, Lisbon-57, and Stavropol 08/01. Intramuscular injection of this strain protected 80% of pigs from a virulent strain of the same genotype and seroimmunotype (Lisbon-57). At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous (genotype II, seroimmunotype VIII) virulent strain (Stavropol 08/01). Virus-specific antibodies were detectable in serum and saliva samples between 8–78 days after the first inoculation of the Katanga-350 strain (the observational period). The results suggested that this strain could serve as a basis for the development of a recombinant vaccine against ASF viruses belonging to seroimmunotype I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号