首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25529篇
  免费   1730篇
  国内免费   112篇
耳鼻咽喉   282篇
儿科学   584篇
妇产科学   530篇
基础医学   3290篇
口腔科学   813篇
临床医学   2291篇
内科学   5367篇
皮肤病学   406篇
神经病学   2294篇
特种医学   825篇
外科学   3925篇
综合类   247篇
现状与发展   2篇
一般理论   35篇
预防医学   2265篇
眼科学   685篇
药学   1896篇
中国医学   64篇
肿瘤学   1570篇
  2023年   180篇
  2022年   349篇
  2021年   895篇
  2020年   493篇
  2019年   775篇
  2018年   882篇
  2017年   621篇
  2016年   655篇
  2015年   780篇
  2014年   1019篇
  2013年   1206篇
  2012年   1913篇
  2011年   1925篇
  2010年   1063篇
  2009年   965篇
  2008年   1511篇
  2007年   1577篇
  2006年   1509篇
  2005年   1430篇
  2004年   1261篇
  2003年   1111篇
  2002年   1044篇
  2001年   379篇
  2000年   401篇
  1999年   351篇
  1998年   207篇
  1997年   151篇
  1996年   126篇
  1995年   126篇
  1994年   119篇
  1993年   96篇
  1992年   178篇
  1991年   176篇
  1990年   161篇
  1989年   157篇
  1988年   123篇
  1987年   117篇
  1986年   104篇
  1985年   112篇
  1984年   88篇
  1983年   70篇
  1982年   53篇
  1981年   62篇
  1980年   64篇
  1979年   67篇
  1978年   77篇
  1977年   46篇
  1975年   62篇
  1974年   69篇
  1973年   47篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.

Introduction

Congenital heart defects treatment shows progressive reduction in morbidity and mortality, however, the scar, resulting from ventricular (VSD) and atrial septal defect (ASD) repair, may cause discomfort. Right axillary minithoracotomy approach, by avoiding the breast growth region, is an option for correction of these defects that may provide better aesthetic results at low cost. Since October 2011, we have been using this technique for repairing VSD and ASD defects as well as associated defects.

Objectives

To evaluate the efficacy of this method in children undergoing correction of VSD and ASD, to compare perioperative clinical outcomes with those repaired by median sternotomy, and to evaluate the aesthetic result.

Methods

Perioperative clinical data of 25 patients submitted to axillary thoracotomy were compared with data from a paired group of 25 patients with similar heart defects repaired by median sternotomy, from October 2011 to August 2012.

Results

Axillary approach was possible even in infants. There was no mortality and the main perioperative variables were similar in both groups, except for lower use of blood products in the axillary group (6/25) vs. control (13/25), with statistical difference (P =0.04). The VSD size varied from 7 to 15 mm in axillary group. Cannulation of the aorta and vena cavae was performed through the main incision, whose size ranged from 3 to 5 cm in the axillary group, with excellent aesthetic results.

Conclusion

The axillary thoracotomy was effective, allowing for a heart defect repair similar to the median sternotomy, with more satisfactory aesthetic results and reduced blood transfusion, and it can be safely used in infants.  相似文献   
992.
993.
994.

Background

We explored the accuracy of using the learning disability screening questionnaire (LDSQ) in services for people experiencing homelessness in the United Kingdom.

Method

We examined the concordance between the LDSQ outcomes and assessments of intellectual disability. Seventy adults experiencing homelessness completed the LDSQ. Staff completed the LDSQ and a measure of adaptive functioning for 38 of this group. Nine participants received an intellectual assessment.

Results

Sensitivity and specificity for the LDSQ when completed by staff was 83% and 96% respectively and 50% and 92% when completed by the individual. Seven people had intellectual and adaptive functioning in the intellectual disability range.

Conclusion

The results suggest that the LDSQ would be an appropriate and beneficial screening tool to use within services for people experiencing homelessness. More accurate results would be likely if it were completed by staff.  相似文献   
995.
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456.The glomerulus is a sophisticated organelle comprising unique cellular and extracellular matrix (ECM) components. Fenestrated capillary endothelial cells and overlying podocytes are separated by a specialized glomerular basement membrane (GBM), and these three components together form the filtration barrier. Mesangial cells and their associated ECM, the mesangial matrix, exist between adjacent capillary loops and maintain the three-dimensional organization of the capillary bundle. In turn, the parietal epithelial cells and ECM of Bowman’s capsule enclose this network of capillaries. Cells adhere to ECM proteins by adhesion receptors, and these interactions are required to maintain intact barrier function of the glomerulus.1,2In addition to operating as a signaling platform, ECM provides a structural scaffold for adjacent cells and has a tissue-specific molecular composition.3,4 Candidate-based investigations of glomerular ECM have focused on the GBM and shown that it resembles the typical basal lamina found in multicellular organisms, containing a core of glycoproteins (collagen IV, laminins, and nidogens) and heparan sulfate proteoglycans (agrin, perlecan, and collagen XVIII).5 Mesangial and parietal cell ECMs have been less well investigated; nonetheless, they are also thought to contain similar core components in addition to other glycoproteins, including fibronectin.6,7 Thus, the glomerulus consists of a combination of condensed ECM within the GBM and Bowman’s capsule and loose ECM supporting the mesangial cells.The ECM compartments in the glomerulus are thought to be distinct and exhibit different functional roles. The GBM is integral to the capillary wall and therefore, functionally linked to glomerular filtration.5 Mutations of tissue-restricted isoforms of collagen IV (COL4A3, COL4A4, and COL4A5) and laminin (LAMB2), which are found in the GBM, cause significant barrier dysfunction and ultimately, renal failure.8,9 Less is understood about the functions of mesangial and parietal cell ECMs, although expansion of the mesangial compartment is a histologic pattern seen across the spectrum of glomerular disease.10Compositional investigation of the distinct glomerular ECM compartments is limited by the technical difficulties of separation. Early investigations of GBM constituents used the relative insolubility of ECM proteins to facilitate separation from cellular proteins in the glomerulus but did not separate the GBM from mesangial and parietal cells ECMs.11,12 Recently, studies incorporating laser microdissection of glomerular sections have been coupled with proteomic analyses.13,14 These studies report both cellular and ECM components and typically require pooled material from glomerular sections to improve protein identification. The ability of laser microdissection to separate glomerular ECM compartments has not yet been tested; however, this approach will be limited by the amount of protein that is possible to retrieve. To achieve good coverage of ECM proteins within a tissue, proteomic studies need to combine a reduction in sample complexity with maximal protein quantity. Currently, the inability to separate glomerular ECM compartments in sufficient quantity is a limitation that prohibits proteomic studies of these structures; however, for other tissues, proteomic analysis of ECM has been achieved by enrichment of ECM combined with sample fractionation.15Although the composition of the ECM in other tissues has been addressed using proteomic approaches,15 studies of glomerular ECM to date have used candidate-based technologies. These studies have identified key molecular changes during development and disease and highlighted the compositional and organizational dynamics of glomerular ECM. Nonetheless, the extracellular environment within the glomerulus is the setting for a complex series of interactions between both structural ECM proteins and ECM-associated proteins, such as growth factors1618 and proteases,19 which together provide a specialized niche to support glomerular cell function. Therefore, to interrogate this complexity effectively, a systems-level understanding of glomerular ECM is required. To address the need for a global analysis of the extracellular environment within the glomerulus, we used mass spectrometry (MS)-based proteomics of glomerular ECM fractions to define the human glomerular ECM proteome.  相似文献   
996.
NADPH oxidase (Nox) enzymes are a significant source of reactive oxygen species, which contribute to glomerular podocyte dysfunction. Although studies have implicated Nox1, -2, and -4 in several glomerulopathies, including diabetic nephropathy, little is known regarding the role of Nox5 in this context. We examined Nox5 expression and regulation in kidney biopsies from diabetic patients, cultured human podocytes, and a novel mouse model. Nox5 expression increased in human diabetic glomeruli compared with nondiabetic glomeruli. Stimulation with angiotensin II upregulated Nox5 expression in human podocyte cultures and increased reactive oxygen species generation. siRNA-mediated Nox5 knockdown inhibited angiotensin II–stimulated production of reactive oxygen species and altered podocyte cytoskeletal dynamics, resulting in an Rac-mediated motile phenotype. Because the Nox5 gene is absent in rodents, we generated transgenic mice expressing human Nox5 in a podocyte-specific manner (Nox5pod+). Nox5pod+ mice exhibited early onset albuminuria, podocyte foot process effacement, and elevated systolic BP. Subjecting Nox5pod+ mice to streptozotocin-induced diabetes further exacerbated these changes. Our data show that renal Nox5 is upregulated in human diabetic nephropathy and may alter filtration barrier function and systolic BP through the production of reactive oxygen species. These findings provide the first evidence that podocyte Nox5 has an important role in impaired renal function and hypertension.Albuminuria is a clinical marker of kidney dysfunction that arises in most glomerulopathies and is associated with poor prognoses for ESRD, hypertension, and cardiovascular mortality. Changes to the podocyte (e.g., foot process effacement, hypertrophy, detachment, and loss) underlie the development and progression of albuminuria and thereby highlight the critical role for these cells in upholding the glomerular filtration barrier.1,2 Therefore, identifying factors that induce podocyte injury and loss is essential to understanding the mechanisms of filtration barrier dysfunction.Of the many factors implicated in podocyte dysfunction, excessive production of reactive oxygen species (ROS; oxidative stress) may be particularly important.36 Although sources of ROS are numerous, the NADPH oxidase (Nox) family of enzymes yields significant superoxide production in the kidney.710 Nox-induced ROS production has been closely linked to various glomerular pathologies. In animal models of minimal change disease, membranous nephropathy, and FSGS, inhibition of Nox activity is associated with decreased podocyte effacement and amelioration of albuminuria.1114 In models of diabetic nephropathy, treatment with the Nox inhibitor apocynin, as well the antioxidant vitamin E, reduces oxidative stress, podocyte effacement and loss, and albuminuria.6,15,16 Noxs are regulated by many factors, including the renin angiotensin aldosterone system.5,9 Several studies have linked increased renin angiotensin aldosterone system activity to enhanced renal Nox activity and ROS generation.5,17 Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers slow progression of proteinuria in models of diabetes, and these effects may be, in part, independent of their effects on systemic BP,1720 because direct activation of Nox enzymes through the angiotensin II (AngII)/AT1 receptor (AT1R) pathway leads to oxidative stress. In vitro studies in both human and rodent cell lines have also shown that Nox family member expression and activity are regulated by disease-associated factors, including AngII, ET-1, TGF-β, high glucose, mechanical stretch, and PDGF (factors that are upregulated in the diabetic milieu).3,2123The roles of Nox4, and to a lesser extent, Nox1 and -2, in the kidney have been examined, but nothing is known regarding the role of the most recently identified member of the Nox family, Nox5. The Nox5 gene is absent from the mouse and rat genomes, making the use of conventional animal models unfeasible. Unlike other Nox family members, Nox5 does not require membrane-bound or cytosolic components, such as p22phox or p47phox, for its activity, but is tightly regulated by changes in intracellular calcium levels.24,25 Nox5 has a large amino terminal EF hand-containing domain that plays a critical role in its calcium-dependent activation along with several phosphorylation sites that alter the sensitivity of Nox5 to intracellular calcium.2629 Because AngII increases intracellular calcium concentrations, it seems to induce renal Nox5-dependent ROS generation, which was shown in human endothelial cells.23 Here, we show that (1) Nox5 is upregulated in human diabetic glomeruli; (2) AngII stimulates ROS generation in human podocytes in a Nox5-dependent manner, a process associated with actin cytoskeletal reorganization and activation of Rac GTPase, which promotes podocyte motility in vitro; (3) mice that express human Nox5 in a podocyte-specific manner (Nox5βpod+ mice) exhibit renal dysfunction, including albuminuria, podocyte effacement, glomerular basement membrane (GBM) thickening, interstitial fibrosis, and hypertension; and (4) Nox5pod+ mice subjected to streptozotocin (STZ)-induced diabetes develop a more severe kidney phenotype than nontransgenic littermates. These novel data indicate the potential importance of podocyte Nox5 in human renal pathologies, such as diabetic nephropathy.  相似文献   
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号