首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   61篇
  国内免费   3篇
耳鼻咽喉   20篇
儿科学   35篇
妇产科学   9篇
基础医学   176篇
口腔科学   2篇
临床医学   76篇
内科学   188篇
皮肤病学   6篇
神经病学   167篇
特种医学   39篇
外科学   135篇
综合类   1篇
预防医学   82篇
眼科学   18篇
药学   34篇
中国医学   2篇
肿瘤学   30篇
  2023年   8篇
  2022年   31篇
  2021年   31篇
  2020年   16篇
  2019年   18篇
  2018年   27篇
  2017年   24篇
  2016年   28篇
  2015年   40篇
  2014年   31篇
  2013年   38篇
  2012年   65篇
  2011年   65篇
  2010年   51篇
  2009年   36篇
  2008年   63篇
  2007年   50篇
  2006年   51篇
  2005年   57篇
  2004年   45篇
  2003年   31篇
  2002年   35篇
  2001年   15篇
  2000年   18篇
  1999年   19篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   6篇
  1991年   13篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1981年   3篇
  1980年   4篇
  1975年   2篇
  1974年   4篇
  1969年   3篇
  1968年   4篇
  1922年   2篇
  1908年   2篇
  1887年   1篇
  1858年   1篇
排序方式: 共有1020条查询结果,搜索用时 15 毫秒
41.
Neurosurgical Review - The Woven EndoBridge device (WEB) was introduced in 2010 to treat wide-neck bifurcation aneurysms (WNBAs). Three landmark studies have been conducted to assess its safety and...  相似文献   
42.
Two distinct types of CpG oligodeoxynucleotide (ODN) have been identified that differ in their capacity to stimulate antigen-presenting cells: CpG-A induces high amounts of interferon-alpha (IFN-alpha) and IFN-beta in plasmacytoid dendritic cells (PDCs), whereas CpG-B induces PDC maturation and is a potent activator of B cells but stimulates only small amounts of IFN-alpha and IFN-beta. Here we examined the ability of these CpG ODNs to enhance peptide-specific CD8+ T-cell responses in human peripheral blood mononuclear cells (PBMCs). The frequency of influenza matrix-specific "memory" CD8+ T cells was increased by both types of CpG ODN, whereas the frequency of Melan-A specific "naive" CD8+ T cells increased on stimulation with CpG-B but not with CpG-A. The presence of PDCs in PBMCs was required for this CpG ODN-mediated effect. The expanded cells were cytotoxic and produced IFN- on peptide restimulation. Soluble factors induced by CpG-A but not CpG-B increased the granzyme-B content and cytotoxicity of established CD8+ T-cell clones, each of which was IFN-alpha/-beta dependent. In conclusion, CpG-B seems to be superior for priming CD8+ T-cell responses, and CpG-A selectively enhances memory CD8+ T-cell responses and induces cytotoxicity. These results demonstrate distinct functional properties of CpG-A and CpG-B with regard to CD8 T cells.  相似文献   
43.
44.
Eating behavior is crucial in the development of obesity and Type 2 diabetes. To further investigate its regulation, we studied the effects of glucose versus water ingestion on the neural processing of visual high and low caloric food cues in 12 lean and 12 overweight subjects by functional magnetic resonance imaging. We found body weight to substantially impact the brain's response to visual food cues after glucose versus water ingestion. Specifically, there was a significant interaction between body weight, condition (water versus glucose), and caloric content of food cues. Although overweight subjects showed a generalized reduced response to food objects in the fusiform gyrus and precuneus, the lean group showed a differential pattern to high versus low caloric foods depending on glucose versus water ingestion. Furthermore, we observed plasma insulin and glucose associated effects. The hypothalamic response to high caloric food cues negatively correlated with changes in blood glucose 30 min after glucose ingestion, while especially brain regions in the prefrontal cortex showed a significant negative relationship with increases in plasma insulin 120 min after glucose ingestion. We conclude that the postprandial neural processing of food cues is highly influenced by body weight especially in visual areas, potentially altering visual attention to food. Furthermore, our results underline that insulin markedly influences prefrontal activity to high caloric food cues after a meal, indicating that postprandial hormones may be potential players in modulating executive control. Hum Brain Mapp 35:918–928, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
45.
The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting‐state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal‐weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal‐weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network. Hum Brain Mapp 35:6088–6096, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
46.
The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines.Advances in targeted genome editing technologies have opened new avenues for addressing challenging questions in the field of life sciences. The recent introduction of designer nucleases such as ZFNs (Carroll 2011), TALENs (Miller et al. 2011), or CRISPR/Cas systems (Jinek et al. 2012; Cong et al. 2013; Mali et al. 2013) allows for highly efficient, flexible, and specific induction of DNA double-strand breaks (DSB) in eukaryotic genomes. DSBs trigger two distinct repair pathways that can be exploited to specifically modify gene architecture (Carroll 2011). While the process of homologous recombination (HR) accurately repairs DSBs using the sister chromatid as a template, nonhomologous end-joining (NHEJ) repair is an error-prone end-joining mismatch repair pathway that frequently leads to genetic alterations (Lieber 2010; Chiruvella et al. 2013). Providing a donor construct with appropriate homology arms as a template, the pathway of DSB-triggered HR can be used to site-specifically introduce heterologous genetic material into cells (Carroll 2011). For example, it is possible to generate gene knockouts in somatic cell lines by introducing marker cassettes with premature stop codons. However, this strategy is time consuming and laborious and therefore not optimal for high-throughput approaches. The DSB-induced NHEJ repair pathway, on the other hand, leads to insertions or deletions (indels) (Lieber 2010) that can result in frameshift mutations and thus loss-of-function phenotypes if located within early coding exons.While in HR-based genome editing approaches marker genes can be introduced to select for the desired genotype starting from a polyclonal cell culture, frameshift mutations induced by NHEJ are difficult to select for unless the editing event provides a survival benefit. To this end, single-cell cloning and subsequent sequencing of the genetic locus is required to obtain cells with the desired gene disruption. Sanger sequencing is most commonly used to identify modified alleles. However, in addition to being costly, this method requires a locus-specific PCR to be subcloned in order to sequence single alleles, and thus is not practical for large-scale projects. Moreover, the ploidy of the genome may vary between cell lines and even between loci, which may require the sequencing of a considerable number of PCR subclones to reliably identify cell clones with all-allelic frameshift mutations. Small benchtop deep sequencing machines can achieve a far greater throughput. Theoretically, even low sequencing capacities are sufficient to analyze hundreds of clones in parallel, without the need to subclone PCR products. However, analysis of deep sequencing data remains challenging and no streamlined workflow has been described that would allow full exploitation of deep sequencing capacities in gene disruption projects.Here we describe OutKnocker, a web-based application that facilitates the analysis of deep sequencing data to identify knockout cells obtained from designer nuclease-mediated genome editing. We aimed at developing an evaluation tool to genotype single-cell clones at a confined genomic region for indel mutations, as they are typically induced by designer nuclease targeting. As such, we established an algorithm that focuses on identifying a single indel event per sequencing read around a predefined target site, while ignoring SNPs or point mutations originated during sequencing. Optionally, our software also allows the detection of specific point mutations introduced by targeted mutagenesis. To fully exploit sequencing capacities, OutKnocker was designed to analyze data of sequencing runs that have been multiplexed to evaluate the same or different genomic target regions in parallel, while only requiring a limited number of unidirectional sequencing reads. OutKnocker is operated from a web browser making it conveniently accessible to any user.  相似文献   
47.
OBJECTIVEInsulin action in the human brain reduces food intake, improves whole-body insulin sensitivity, and modulates body fat mass and its distribution. Obesity and type 2 diabetes are often associated with brain insulin resistance, resulting in impaired brain-derived modulation of peripheral metabolism. So far, no pharmacological treatment for brain insulin resistance has been established. Since sodium–glucose cotransporter 2 (SGLT2) inhibitors lower glucose levels and modulate energy metabolism, we hypothesized that SGLT2 inhibition may be a pharmacological approach to reverse brain insulin resistance.RESEARCH DESIGN AND METHODSIn this randomized, double-blind, placebo-controlled clinical trial, 40 patients (mean ± SD; age 60 ± 9 years; BMI 31.5 ± 3.8 kg/m2) with prediabetes were randomized to receive 25 mg empagliflozin every day or placebo. Before and after 8 weeks of treatment, brain insulin sensitivity was assessed by functional MRI combined with intranasal administration of insulin to the brain.RESULTSWe identified a significant interaction between time and treatment in the hypothalamic response to insulin. Post hoc analyses revealed that only empagliflozin-treated patients experienced increased hypothalamic insulin responsiveness. Hypothalamic insulin action significantly mediated the empagliflozin-induced decrease in fasting glucose and liver fat.CONCLUSIONSOur results corroborate insulin resistance of the hypothalamus in humans with prediabetes. Treatment with empagliflozin for 8 weeks was able to restore hypothalamic insulin sensitivity, a favorable response that could contribute to the beneficial effects of SGLT2 inhibitors. Our findings position SGLT2 inhibition as the first pharmacological approach to reverse brain insulin resistance, with potential benefits for adiposity and whole-body metabolism.  相似文献   
48.
49.
Most models regarding the ‘clonal’ origin of CD8+ T cell effector and memory subset diversification suggest that during the first contact of a naïve T cell with the priming antigen-presenting cell major decisions for subsequent differentiation are made. Data using novel single-cell T cell tracking technologies demonstrate that a single naïve CD8+ T cell can give rise to virtually all different subtypes of effector and memory T cells, and direct major determinants of subset diversification to the time period beyond the first cell division. Thereby, some ‘stem cell-like’ characteristics typical for naïve T cells are probably still maintained within distinct subsets of memory T cells. These observations have direct consequences for clinical applications like adoptive T cell therapy.  相似文献   
50.
In the central nervous system, canonical transient receptor potential (TRPC) channels have been implicated in mediating neuronal excitation induced by stimulating metabotropic receptors, including group 1 metabotropic glutamate receptors (mGluRs). Lateral septal (LS) neurons express high levels of TRPC4 and group I mGluRs. However, to what extent native TRPC4-containing channels (TRPC4-cc) are activated as well as the impact of different levels of TRPC4-cc activation on neuronal excitability remain elusive. Here, we report that stimulating LS neurons with group I mGluR agonist, (S)-3,5-DHPG, causes either an immediate increase in firing rate or an initial burst followed by a pause of firing, which can be correlated with below-threshold-depolarization (BTD) or above-threshold-plateau-depolarization (ATPD), respectively, in whole-cell recordings. The early phase of BTD and the entire ATPD are completely absent in neurons from TRPC4?/? mice. Moreover, in the same LS neurons, BTD can be converted to ATPD at more depolarized potentials or with a brief current injection, suggesting that BTD and ATPD may represent partial and full activations of TRPC4-cc, respectively. We show that coincident mGluR stimulation and depolarization is required to evoke strong TRPC4-cc current, and Na+ and Ca2+ influx, together with dynamic changes of intracellular Ca2+, are essential for ATPD induction. Our results suggest that TRPC4-cc integrates metabotropic receptor stimulation with intracellular Ca2+ signals to generate two interconvertible depolarization responses to affect excitability of LS neurons in distinct fashions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号