首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34399篇
  免费   3173篇
  国内免费   2529篇
耳鼻咽喉   391篇
儿科学   396篇
妇产科学   367篇
基础医学   4045篇
口腔科学   580篇
临床医学   4755篇
内科学   4989篇
皮肤病学   367篇
神经病学   1986篇
特种医学   1266篇
外国民族医学   24篇
外科学   3190篇
综合类   6462篇
现状与发展   11篇
预防医学   2122篇
眼科学   1107篇
药学   3467篇
  26篇
中国医学   1871篇
肿瘤学   2679篇
  2024年   124篇
  2023年   674篇
  2022年   1582篇
  2021年   1820篇
  2020年   1413篇
  2019年   1207篇
  2018年   1250篇
  2017年   1189篇
  2016年   1023篇
  2015年   1578篇
  2014年   1941篇
  2013年   1687篇
  2012年   2636篇
  2011年   2736篇
  2010年   1625篇
  2009年   1306篇
  2008年   1570篇
  2007年   1658篇
  2006年   1674篇
  2005年   1696篇
  2004年   1060篇
  2003年   1011篇
  2002年   883篇
  2001年   785篇
  2000年   808篇
  1999年   936篇
  1998年   602篇
  1997年   664篇
  1996年   495篇
  1995年   415篇
  1994年   354篇
  1993年   205篇
  1992年   271篇
  1991年   238篇
  1990年   201篇
  1989年   179篇
  1988年   168篇
  1987年   133篇
  1986年   101篇
  1985年   77篇
  1984年   34篇
  1983年   20篇
  1982年   27篇
  1981年   15篇
  1980年   8篇
  1979年   9篇
  1965年   2篇
  1940年   3篇
  1935年   2篇
  1934年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
993.
994.
This study investigated the expression and role of chemokine receptor-4 (CXCR4) in bone marrow mesenchymal stem cells (BMSCs) from experimental rats with abdominal aortic aneurysms (AAA) for migration of BMSCs. Sprague–Dawley rats were divided into an experimental group and control group (n = 18 each). AAA was induced with 0.75 M solution infiltrate for 30 minutes, after which the abdomen was rinsed and closed. Saline was used in place of CaCl2 in the control group. CD34 and CD29 were detected by flow cytometry, the gene and protein expression of CXCR4 were detected by real-time polymerase chain reaction and western blot, respectively. The migration of BMSCs with stromal-derived factor-1 was detected by Transwell chamber. CD34 expression was negative and CD29 expression was positive. The gene and protein expression of CXCR4 were significantly higher in experimental group than them in control group (p < 0.05), the migration ability of BMSCs from the experimental group was significantly higher than that from the control group (p < 0.05). Stromal-derived factor -1/CXCR4 can enhance the migration of BMSCs in vitro in a rat AAA model.  相似文献   
995.
Polymers with targeted ligands are widely used as the anti-cancer drug delivery materials. For applications of chitosan as an anti-liver cancer drug delivery, poly (ethylene glycol)/lactobionic acid-grafted chitosan (PEG/LA-CS) was prepared and investigated since lactobionic acid can be specifically recognized by the hepatocytes. The structure of the PEG/LA-CS was characterized by Fourier transform infrared spectrometry and elemental analysis. The self-assembly behaviors of the PEG/LA-CS were monitored by steady-state fluorescence spectroscopy and electronic transmission microscope. The protein adsorption of the PEG/LA-CS was detected with bovine serum albumin (BSA) by electrochemical impedance spectroscopy. The results showed that the PEG/LA-CS almost did not adsorb protein. To study the effects of PEG/LA-CS on the structure of BSA, the interactions between the PEG/LA-CS and BSA were detected by ultraviolet spectrum, fluorescence spectrum, and circular dichroism. All the data gave one result that BSA maintained its original folded confirmation in PEG/LA-CS solution. The hemocompatibility of PEG/LA-CS was investigated by observing the effects of PEG/LA-CS on the hemolysis rate and the plasma recalcification time (PRT). The results showed that the PRT was prolonged greatly and the hemolysis rate was less than 5%. Furthermore, PEG/LA-CS also showed good cytocompatibility with K562, Hep G2, and LO2 cells. Therefore, the PEG/LA-CS is believed to have great potential for producing injectable anti-liver cancer drug delivery.  相似文献   
996.
In this study, a street rabies virus isolate, GXHXN, was obtained from the brain of one rabid cattle in Guangxi province of southern China. To characterize the biological properties of GXHXN, we first evaluated its pathogenicity using 4-week-old adult mice. GXHXN was highly pathogenic with a short incubation period and course of disease. Its LD50 of 10?6.86/mL is significantly higher than the LD50 of 10?5.19/mL of GXN119, a dog-derived rabies virus isolate. It also displayed a higher neurotropism index than the rRC-HL strain. However, the relative neurotropism index of GXHXN was slightly lower than that of GXN119. Analyzing antigenicity using anti-N and anti-G monoclonal antibodies (MAbs), all tested anti-N MAbs reacted similarly to GXHXN, CVS, and rRC-HL, but the reaction of anti-N MAbs to GXHXN was slightly different from GXN119. Moreover, 2/11 tested anti-G mAbs showed weaker reactivity to GXHXN than rRC-HL, whereas 4/11 showed stronger reactivity to GXHXN than CVS and GXN119, indicating that the structures of G might differ. In order to understand its genetic variation and evolution, the complete GXHXN genome sequence was determined and compared with the known 12 isolates from other mammals. A total of 42 nucleotide substitutions were found in the full-length genome, including 15 non-synonymous mutations. The G gene accounts for the highest nucleotide substitution rate of 0.70 % in ORF and an amino acid substitution rate of 0.95 %. Phylogenetic trees based on the complete genome sequence as well as the N and G gene sequences from 37 known rabies isolates from various mammals demonstrated that the GXHXN is closely related to the BJ2011E isolate from a horse in Beijing, the WH11 isolate from a donkey in Hubei, and isolates from dogs in the Fujian and Zhejiang provinces. These findings will be helpful in exploring the molecular mechanisms underlying interspecies transmission and the genetic variation of the rabies virus in different mammal species.  相似文献   
997.
Two microporous organic polymer immobilized palladium (MOP-Pd) catalysts were prepared from benzene and 1,10-phenanthroline by Scholl coupling reaction and Friedel–Crafts reaction, respectively. The structure and composition of the catalyst were characterized by FT-IR, TGA, N2 sorption, SEM, TEM, ICP-AES and XPS. MOP-Pd catalysts were found to possess high specific surface areas, large pore volume and low skeletal bone density. Moreover, the immobilized catalyst also had advantages, such as readily available raw materials, chemical and thermal stability, and low synthetic cost. The Pd catalyst is an effective heterogeneous catalyst for carbon–carbon (C–C) coupling reactions, such as the Heck reaction and Suzuki–Miyaura reaction, affording good to high yields. In these reactions, the catalyst was easily recovered and reused five times without significant activity loss.

Two microporous organic polymers were prepared from 1,10-phenanthroline by Scholl coupling reaction and Friedel–Crafts reaction, and applied to Heck reaction and Suzuki–Miyaura reaction as heterogeneous catalysts.

Carbon–carbon (C–C) coupling reactions have become one of the most versatile and utilized reactions for the selective construction of C–C bonds for the formation of functionalised aromatics,1 natural products,2 pharmaceuticals,3 polymers4 and advanced materials.5 Many transition metals have been used as catalysts in these reactions, aided by a great variety of ligands ranging from simple, commercial phosphines to complex custom-made molecules.6 Among these transition metals, palladium plays a significant role in various cross-coupling reactions, such as Suzuki,7 Heck,8 Sonogashira,9 Stille,10 and Ullmann coupling reactions,11 due to their strong electrical and chemical properties.12 Over the past decades, various homogeneous catalytic systems have been developed for organic transformations,13 which often progress smoothly under the inert atmosphere in organic solvents, for example, toluene or tetrahydrofuran in the presence of soluble palladium complexes as catalysts. However, most homogeneous palladium catalysts suffer from drawbacks such as high-cost of phosphine ligands, use of various additives, difficult separation, metal leaching, recovery, recyclability, and the toxicity of phosphine ligands.Heterogeneous catalysis have attracted increasing attention as they have been proven to be useful for different organic reactions owning to their unique properties, such as high reactivity, stability, easy separation, purification and recyclability.14 Many active heterogeneous palladium catalysts have been developed and widely applied in the C–C coupling reactions.15 Palladium has been immobilized on various solid supporting materials, such as zeolite,16 silica,17 metal organic frameworks,18 and functionalized graphene oxide.19 However, a substantial decrease in activity and selectivity of the heterogeneous palladium catalysts is frequently observed because of their long diffusion pathway to catalytic sites and the difference of electron density on active sites. To address these problems, materials with larger interface and more active site are employed to support palladium as heterogeneous catalysts, such as palladium immobilized on hyper-crosslinked polymers were high activity in Suzuki–Miyaura coupling reaction.20Microporous organic polymers (MOPs) consists of purely organic elements have recently emerged as versatile platforms for heterogeneous catalysts thanks to their unique properties, including superior chemical, thermal and hydrothermal stability, synthetic diversity, low skeletal density and high surface area.20,21 More importantly, the bottom–up approach of MOPs provides an opportunity for the design of polymer frameworks with a range of functionalities into the porous structure to use as catalysts or ligands.22 Recently, Kaskel reported the incorporation of a thermally fragile imidazolium moiety into MOPs resulted in a heterogeneous organocatalyst active in carbene-catalyzed Umpolung reaction.23 Wang designed photocatalysts with microporous via the copolymerization from pyrene and dibenzothiophene-S,S-dioxide building blocks and tested the effect of the photocatalytic hydrogen evolution.24 Xu described the synthesis of microporous with N-heterocyclic carbenes by an external cross-linking reaction and applied it in Suzuki reaction.25 Zhou demonstrated for the first time that the microporous structure has a positive effect on controlling selectivities in the hydrosilylation of alkynes.26 Recently, we also reported three pyridine-functionalized N-heterocyclic carbene–palladium complexes and its application in Suzuki–Miyaura coupling reactions.271,10-phenanthroline is an ideal candidate of ligands due to its structural features such as two N-atom placed in juxta position to provide binding sites for metal cations.28 To utilize the unique structure feature, we employed it in the construction of MOPs via Scholl and Friedel–Crafts reaction, respectively. Therefore, this paper presents our recent studies on the synthesis of two heterogeneous palladium catalysts supported on MOPs through a simple and low-cost procedure. These catalysts displayed remarkable catalytic activity in C–C coupling reactions, including Suzuki–Miyaura reaction and Heck coupling reaction. The properties of simple preparation, wide application of this catalyst and good performance in C–C coupling reactions and adaptability with various substrates make it perfect catalytic option for C–C coupling reactions.The microporous network with 1,10-phenanthroline functional groups and incorporation of Pd metal were confirmed by Fourier transform infrared (FT-IR) spectroscopy. The FT-IR spectra of MOPs and MOPs-Pd (Fig. 1) displayed a series of bands around 2800–3100 cm−1, which were assigned to the C–H stretching band and in-of-plane bending vibrations of the aryl rings. The bands around 1550–1750 cm−1 were attributed to the –C Created by potrace 1.16, written by Peter Selinger 2001-2019 N- stretching band. The bands around 1400–1450 and 850–700 cm−1 were corresponded to the benzene and 1,10-phenanthroline skeletal stretching and the C–H out-of-plane bending vibrations of the aryl rings, respectively. The bond around 1495 cm−1 in MOPs-I and MOPs-Pd-I is assigned to in-of-plane bending vibrations of CH2, which indicated that 1,10-phenanthroline and benzene were linked by CH2.Open in a separate windowFig. 1FT-IR spectra of MOPs and MOPs-Pd.The X-ray photoelectron spectroscopy (XPS) analysis of the MOPs-Pd is performed to investigate the coordination states of palladium species (Fig. 2). In Fig. 2, the Pd 3d XPS spectra of the MOPs-Pd-I catalysts reveal that Pd is present in the +2 oxidation state rather than in the metallic state. This is corresponding to the binding energy (B.E.) of 337.4 eV and 342.4 eV, which are assigned to be Pd 3d5/2 and 3d3/2 of Pd (+2), respectively. Compared with the PdCl2 (337.9 eV and 343.1 eV), the Pd2+ binding energy in the MOPs-Pd-I catalyst shifts negatively by 0.5 eV and 0.7 eV. This can be attributed to the effect of the coordination with 1,10-phenanthroline in microporous networks. The results show that Pd2+ can be immobilized successfully on the MOPs by coordinating to 1,10-phenanthroline rather than by physical adsorption of Pd2+ on the surface. XPS graphs of MOPs-Pd-II also reveal that Pd2+ is immobilized on MOPs materials.Open in a separate windowFig. 2XPS spectra of the MOPs-Pd.The surface area and pore structure of the MOPs and MOPs-Pd were investigated by nitrogen adsorption analyses at 77.3 K. In Fig. 3, the MOPs-Pd exhibits type I adsorption–desorption isotherms, which is similar to the isotherms exhibited by the parent MOPs polymers. The result implies that these microporous organic polymers and metalized polymers consist of both micropores and mesopores. The apparent Brunauer–Emmett–Teller surface areas (SBET) of MOPs-Pd are smaller than those of the non-metallized parent networks (Open in a separate windowFig. 3N2 adsorption–desorption isotherms and corresponding pore size distributions of MOPs and MOPs-Pd.Physical properties of MOPs and MOPs-Pd
Sample S BET a [m2 g−1] S Micro b [m2 g−1]VMicroc [m3 g−1][Pd]d [wt%]
MOPs-I7614470.211
MOPs-Pd-I7444220.1992.5
MOPs-II6645060.225
MOPs-Pd-II6235020.2252.4
Open in a separate windowaSurface area calculated from the nitrogen adsorption isotherm using the BET method.bThe micropore volume derived using a t-plot method based on the Halsey thickness equation.cTotal pore volume at P/P0 = 0.99.dData were obtained by inductively coupled plasma mass spectrometry (ICP-AES).The thermal stability of the MOPs and MOPs-Pd was also assessed by TGA. The TGA traces obtained from MOPs and MOPs-Pd are shown in Fig. 4. The data analysis has been performed, and results are also shown in Fig. 4. These results show that MOPs and MOPs-Pd exhibit good thermal stability in nitrogen. It is obvious to see that the T5% and T10% of the MOPs-II and MOPs-Pd-II are lower compared with MOPs-I and MOPs-Pd-I. This is because of the large amount CH2 in MOPs-I and MOPs-Pd-I.Open in a separate windowFig. 4TGA curves of MOPs and MOPs-Pd.MOPs and MOPs-Pd were subjected to SEM and TEM analyses, and the results are shown in Fig. 5 and and6.6. We can see a large number of pores in MOPs and MOPs-Pd from the SEM imagines, and uniformly distributed Pd nanoparticles in MOPs-Pd from the TEM images. No remarkable change in terms of the morphology of the materials occurs after loading the palladium species. Then, scanning electron microscopy elemental mapping was employed to investigate the composition of MOPs-Pd. The results are shown in ESI (Section IV). Obviously, the metal Pd in MOPs-Pd-I and II are distributed in the support with a high degree of dispersion. Meanwhile, C, N, Pd and Cl are observed from these images, implying those are the major elements to construct the MOPs-Pd catalyst.Open in a separate windowFig. 5SEM image of MOPs and MOPs-Pd.Open in a separate windowFig. 6TEM image of MOPs and MOPs-Pd.Then, we investigated the activities of the MOPs-Pd catalysts to determine the potential relationships between the structure and catalyst activity. To check the catalytic activity of the MOPs-Pd in the Heck coupling reaction, iodobenzene 1a and ethyl acrylate 2a were taken as the model substrate in presence of MOPs-Pd catalyst for optimization of the reaction condition. First, the reaction of 1a with 2a was carried out in the present of Et3N with MOPs-Pd-I as catalysis in EtOH under reflex to afford 3a in 75% yield. Then, a series of experiments was carried out to screen the reaction conditions, including catalysis, base, solvent, and reaction temperature. The optimal results were obtained when the reaction of 1a with 2a was carried out in the present of Et3N with MOPs-Pd-I as catalysis in DMF at 120 °C for 1.5 h to afford 3a in 96% yield. Under the optimal conditions, we carried out a series of reactions of 1 with 2 aiming to determine its scope. As shown in
EntryR1R2R33Yieldb (%)
1HHEt3a96
24-MeHEt3b98
34-MeOHEt3c97
44-ClHEt3d95
54-NO2HEt3e93
64-CNHEt3f93
73-MeHEt3g94
83,5-(Me)2HEt3h97
9HHMe3i98
103-MeHMe3j95
11HHBu3k97
123-MeHBu3l94
13HHH3m94
144-MeHH3n95
154-MeOMeMe3o90
Open in a separate windowaReaction conditions: 1a (2.5 mmol), 2a (3.7 mmol), Et3N (3.7 mmol), MOPs-Pd-I (50 mg, 0.28 mol%), DMF (10 mL), 120 °C, 1.5 h.bIsolated yields.To determine the active catalyst, we did two experiments in the same condition as 29 Thus, we investigated the recycling performance in Heck reaction, and the results are shown in Fig. 7. The reaction was conducted in the present of Et3N with MOPs-Pd as catalysis in DMF at 120 °C for 1.5 h. Then, the catalyst was recovered by filtering, washing with water and ethyl acetate. Finally, the recovered catalyst was dried in an oven for 2.0 h. After six runs, the reused MOPs-Pd-I and II are still capable of catalyzing the reaction in 93% and 91% yield, respectively. This clearly reveals a slight decrease in catalytic activity and product yield. In addition, the morphology of recovered catalyst was analyzed by the SEM (see ESI, Section IV), and the results show that there is no remarkable change in terms of the morphology of the materials. The contents of Pd in recovered MOPs-Pd-I and II were 2.3% and 2.1% by ICP-AES, implying a slight leaching of palladium species.Open in a separate windowFig. 7Recycle test of MOPs-Pd in Heck reaction.To extend the utility of MOPs-Pd in the carbon–carbon coupling reactions, we examined other organic reactions. Suzuki–Miyaura reaction is an important palladium-catalyzed cross coupling in organic synthesis. Therefore, we examined the MOPs-Pd catalysts in Suzuki–Miyaura reaction. First, the reaction of 1a with 4a was put together in the present of K3PO4 and MOPs-Pd-I in MeOH under reflex. As monitored by TLC, the reaction proceeded smoothly and the yield of 5a reached 91%. Then we investigated the optimization of the reaction conditions, including catalysis, base, solvent, and reaction temperature. A series of experiments revealed that EtOH/H2O (VEtOH/VH2O = 2 : 1) was effective for the synthesis of 5a. The yield of 5a reached 97% when the reaction of 1a with 4a was performed in the present of K3PO4 with MOPs-Pd-I as a catalyst at 80 °C for 1.0 hour. In this reaction, the MOPs-Pd-I catalyst also can be reused for 5 times with no significant decrease in activity and the Pd content of the recovered catalyst is 2.36% by ICP-AES.Under the optimal conditions, we carried out a series of reactions of 1 with 4 aiming to determine its scope. In EntryR1XR45Yieldb (%)1HIH5a972HI2-Me5b963HI3-Me5c994HI4-Me5d985HI2 F5e966HI3 F5f957HI4 F5g978HI4-CN5h9594-MeIH5d98104-OMeIH5i99114-CNIH5h9412cHBrH5a92Open in a separate windowaReaction conditions: 1a (2.5 mmol), 4a (3.0 mmol), K3PO4 (5.0 mmol), MOPs-Pd-I (50 mg, 0.28 mol%), EtOH/H2O (10 mL), 80 °C, 1.0 h.bIsolated yields.cThe reaction time was 3.0 h.In summary, a simple and low-cost method for synthesis of palladium complexes supported on microporous organic polymers was described. The MOPs-Pd catalysts were constructed based on highly stable microporous material, and characterized by FT-IR, TGA, SEM, TEM, N2 sorption, XPS and ICP. These heterogeneous catalysts displayed outstanding catalytic activities in Heck reaction and Suzuki coupling reaction. In these reactions, the MOPs-Pd catalyst was easily recovered and reused without loss of catalytic activity. The potential utilization and application of these heterogeneous catalysts are currently under investigation in our laboratory.  相似文献   
998.
Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection     
Xueping Luo  Hongyan Xie  Dianhui Chen  Xiuxue Yu  Fan Wu  Lu Li  Changyou Wu  Jun Huang 《Parasitology research》2014,113(3):1001-1009
The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5–7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P?<?0.05). We found an increase in the cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P?<?0.05). These results demonstrated that a S. japonicum infection could induce MLN NK and NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P?<?0.05). Furthermore, intracellular cytokine staining revealed that expression of IL-4 and IL-17 were significantly enhanced in both the NK and NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P?<?0.05). Taken together, these results indicated that infection-induced MLN NK and NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.  相似文献   
999.
A germanium and zinc chalcogenide as an anode for a high-capacity and long cycle life lithium battery     
Xu Chen  Jian Zhou  Jiarui Li  Haiyan Luo  Lin Mei  Tao Wang  Jian Zhu  Yong Zhang 《RSC advances》2019,9(60):35045
High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications. Germanium, possessing a high theoretical capacity, is a promising anode material for lithium ion batteries, but still faces poor cyclability due to huge volume changes during the lithium alloying/dealloying process. Herein, we synthesized an amorphous germanium and zinc chalcogenide (GZC) with a hierarchically porous structure via a solvothermal reaction. As an anode material in a lithium ion battery, the GZC electrode exhibits a high reversible capacity of 747 mA h g−1 after 350 cycles at a current density of 100 mA g−1 and a stable capacity of 370 mA h g−1 after 500 cycles at a current density of 1000 mA g−1 along with 92% capacity retention. All of these outstanding electrochemical properties are attributed to the hierarchically porous structure of the electrode that has a large surface area, fast ion conductivity and superior structural stability, which buffers the volumetric variation during charge/discharge processes and also makes it easier for the electrolyte to soak in, affording more electrochemically active sites.

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.  相似文献   
1000.
Anti‐interleukin‐10R1 monoclonal antibody in combination with bacillus Calmette–Guérin is protective against bladder cancer metastasis in a murine orthotopic tumour model and demonstrates systemic specific anti‐tumour immunity     
E. D. Andresen  V. A. Chehval  X. Wang  R. W. Askeland  M. A. O'Donnell  Y. Luo 《Clinical and experimental immunology》2014,177(1):261-268
Effective treatment of bladder cancer with bacillus Calmette–Guérin (BCG) depends on the induction of a T helper type (Th) 1 immune response. Interleukin (IL)‐10 down‐regulates the Th1 response and is associated with BCG failure. In this study, we investigated whether blocking IL‐10 signalling could enhance the BCG‐induced Th1 response and anti‐tumour immunity in a murine orthotopic tumour model. Treatment with BCG and anti‐IL‐10 receptor 1 monoclonal antibody (anti‐IL‐10R1 mAb) increased the interferon (IFN)‐γ to IL‐10 ratio in both splenocyte cultures and urine. Mice bearing luciferase‐expressing MB49 (MB49‐Luc) tumours were treated and followed for tumour growth by bioluminescent imaging, bladder weight and histology. Mice treated with phosphate‐buffered saline (PBS) (group 1), BCG plus control immunoglobulin (Ig)G1 (group 2) or BCG plus anti‐IL‐10R1 mAb (group 3) showed 0, 6 and 22% tumour regression, respectively. The mean bladder weight of group 3 mice was substantially lower than those of groups 1 and 2 mice. Remarkably, 36% of group 1 and 53% of group 2 mice but no group 3 mice developed lung metastasis (P = 0·02). To investigate the mechanisms underlying the effect of combination therapy, splenocytes were stimulated with S12 peptide (serine mutation at codon 12 of the K‐ras oncogene) known to be expressed in MB49‐Luc cells. Induction of ras mutation‐specific IFN‐γ and cytotoxicity was observed in mice treated with combination therapy. These observations indicate that BCG, in combination with anti‐IL‐10R1 mAb, induces enhanced anti‐tumour immunity that is protective against lung metastasis. Anti‐IL‐10R1 mAb demonstrates systemic effects and may prove useful in clinical practice for treating bladder cancer in high‐risk patients.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号