首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   829篇
  免费   62篇
耳鼻咽喉   5篇
儿科学   11篇
妇产科学   8篇
基础医学   85篇
口腔科学   9篇
临床医学   64篇
内科学   90篇
皮肤病学   11篇
神经病学   199篇
特种医学   23篇
外科学   62篇
综合类   10篇
预防医学   90篇
眼科学   71篇
药学   88篇
肿瘤学   65篇
  2022年   7篇
  2021年   14篇
  2020年   9篇
  2019年   6篇
  2018年   13篇
  2017年   7篇
  2016年   10篇
  2015年   20篇
  2014年   17篇
  2013年   27篇
  2012年   42篇
  2011年   29篇
  2010年   17篇
  2009年   15篇
  2008年   24篇
  2007年   29篇
  2006年   30篇
  2005年   37篇
  2004年   22篇
  2003年   29篇
  2002年   22篇
  2001年   34篇
  2000年   33篇
  1999年   26篇
  1998年   11篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   7篇
  1993年   12篇
  1992年   17篇
  1991年   16篇
  1990年   18篇
  1989年   22篇
  1988年   25篇
  1987年   28篇
  1986年   21篇
  1985年   12篇
  1984年   18篇
  1983年   13篇
  1980年   10篇
  1979年   13篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1974年   9篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1967年   5篇
排序方式: 共有891条查询结果,搜索用时 15 毫秒
101.
102.
103.
3-Aryl-2-phosphinoimidazo[1,2-a]pyridine ligands were synthesized from 2-aminopyridine via two complementary routes. The first synthetic route involves the copper-catalyzed iodine-mediated cyclizations of 2-aminopyridine with arylacetylenes followed by palladium-catalyzed cross-coupling reactions with phosphines. The second synthetic route requires the preparation of 2,3-diiodoimidazo[1,2-a]pyridine or 2-iodo-3-bromoimidazo[1,2-a]pyridine from 2-aminopyridine followed by palladium-catalyzed Suzuki/phosphination or a phosphination/Suzuki cross-coupling reactions sequence, respectively. Preliminary model studies on the Suzuki synthesis of sterically-hindered biaryl and Buchwald–Hartwig amination compounds are presented with these ligands.

3-Aryl-2-phosphoimidazo[1,2-a]pyridine ligands were prepared via two complimentary synthetic routes and were evaluated in the Suzuki–Miyaura and Buchwald–Hartwig amination cross-coupling reactions.

Palladium-catalyzed cross-coupling reactions have revolutionized the formation of C–C and C–X bond formation in the academic and industrial synthetic organic chemistry sectors.1,2 Applications such as synthesis of natural products,3 active pharmaceutical ingredients (API),4 agrochemicals,5 and materials for electronic applications6 are showcased. Snieckus described in his 2010 Nobel Prize review that privileged ligand scaffolds represented the “third wave” in the cross-coupling reactions where the “first wave” was the investigation of the metal catalyst-the rise of palladium and the “second wave” was the exploration of the organometallic coupling partner.1 In the last twenty years, it was recognized that the choice of ligand facilitated the oxidative addition and reductive-elimination steps of the catalytic cycle of transition metal-catalyzed cross-coupling reactions, increasing the overall rate of the reaction. For example, bulky trialkylphosphines facilitated the oxidative addition processes of electron-rich, unactivated substrates such as aryl chlorides.7,8 Sterically demanding ligands also provided enhanced rates of reductive elimination from [(L)nPd(aryl)(R), R = aryl, amido, phenoxo, etc.] species by alleviation of steric congestion.9 Privileged ligands such as Buchwald''s biarylphosphines,10,11 Fu''s trialkylphosphines,7,8,12 Nolan–Hermann''s N-heterocyclic carbenes (NHC),13–15 Hartwig''s ferrocenes,16,17 Beller''s bis(adamantyl)phosphines18,19 and N-aryl(benz)imidazolyl or N-pyrrolylphosphines,20,21 Zhang''s ClickPhos ligands,22,23 and Stradiotto''s biaryl P–N phosphines,24,25 to mention a few, have found wide-spread use in Suzuki–Miyaura, Corriu–Kumada, Heck, Negishi, Sonogashira, C–X (X = S, O, P) cross-coupling and Buchwald–Hartwig amination reactions (Fig. 1). Preformed catalysts with these ligands attached to the palladium metal center are also recognized as well-defined entities in cross-coupling reactions.26Open in a separate windowFig. 1Privileged ligands for palladium-catalyzed cross-coupling reactions.The term privileged structure was first coined by Evans et al. in 1988 and was defined as “a single molecular framework able to provide ligands for diverse receptors”.27 In the last three decades, it is clear that privileged structures are exploited as opportunities in drug discovery programs.28–31 For example, imidazo[1,2-a]pyridines are privileged structures in medicinal chemistry programs (Fig. 2).32 Imidazo[1,2-a]pyridines are a represented motif in several drugs on the market such as zolpidem, marketed as Ambien™ for the treatment of insomnia,33 minodronic acid, marketed as Bonoteo™ for oral treatment of osteoporosis,34 and olprinone, sold as Coretec™ as a cardiotonic agent.35Open in a separate windowFig. 2Imidazo[1,2-a]pyridines as privileged structures in medicinal chemistry and in our cross-coupling reactions approach.Our group is interested in a long-term research program directed at the use of key privileged structures that are employed in drug discovery programs as potential phosphorus ligands for cross-coupling reactions. In our entry into the use of privileged structures from the medicinal chemistry literature for our investigation into new phosphorus ligands, we have developed two complementary synthetic routes for the preparation of 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligands from 2-aminopyridine as our initial substrate.Our first synthetic route for the preparation of 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligands 3a–3l required the copper(ii) acetate iodine-mediated double oxidative C–H amination of 2-aminopyridine (1) with arylacetylenes under an oxygen atmosphere to give 3-aryl-2-iodoimidazo[1,2-a]pyridines 2a–2d (Scheme 1).36,37Open in a separate windowScheme 1Preparation of 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligands 3a–3l from 2-aminopyridine via copper-catalyzed arylacetylene cyclizations/palladium-catalyzed phosphination reactions sequences.Phenylacetylene and 2-/3-/4-methoxyphenylacetylenes were commercially available reagents. With intermediates 2a–d in hand, we explored several cross-coupling phosphination reactions and we found that palladium-catalyzed phosphination with DIPPF ligand in the presence of cesium carbonate as the base in 1,4-dioxane under reflux provided twelve new ligands 3a–3l as shown in 38 Moderate to good yields were obtained under these cross-coupling conditions. There are few commercially available dimethoxyphenylacetylenes, and most are prohibitively expensive, and so an alternative synthetic strategy was explored.Palladium-catalyzed phosphination of 3-aryl-2-iodoimidazo[1,2-a]pyridines 2a–2da
EntryArR3 (% yield)
1Ph (2a) t-Bu3a (41)
2Ph (2a)Cy3b (50)
3Ph (2a)Ph3c (61)
42-OMeC6H4 (2b) t-Bu3d (53)
52-OMeC6H4 (2b)Cy3e (83)
62-OMeC6H4 (2b)Ph3f (69)
73-OMeC6H4 (2c) t-Bu3g (62)
83-OMeC6H4 (2c)Cy3h (72)
93-OMeC6H4 (2c)Ph3i (79)
104-OMeC6H4 (2d) t-Bu3j (73)
114-OMeC6H4 (2d)Cy3k (55)
124-OMeC6H4 (2d)Ph3l (59)
Open in a separate windowaReaction conditions: 2a–2d (1 equiv.), HPR2 (1 equiv.), Pd(OAc)2 (2 mol%), Cs2CO3 (1.2 equiv.), DIPPF (2.5 mol%), 1,4-dioxane, 80 °C.2-Iodoimidazo[1,2-a]pyridine (4) was conveniently prepared in three steps from 2-aminopyridine (1) following literature procedures, which was then converted into either iodo 5 or bromo 6 with NIS or NBS, respectively (Scheme 2).39,40Open in a separate windowScheme 2Preparation of 2,3-diiodoimidazo[1,2-a]pyridine (5) and 3-bromo-2-iodoimidazo[1,2-a]pyridine (6).When the phosphorus ligands 3 contained tert-butyl or cyclohexyl groups, method 1 was followed where 2,3-diiodoimidazo[1,2-a]pyridine (5) underwent Suzuki cross-coupling reactions with arylboronic acids to yield aryl intermediates 7a–7f, which was followed by palladium-catalyzed cross-coupling phosphination reactions with di-tert-butylphosphine or dicyclohexylphosphine to give C-2 substituted phosphorus ligands 3m–3u in low to moderate yields (Scheme 3, 38 The phosphorus ligands 3v–3ab were prepared from 3-bromo-2-iodoimidazo[1,2-a]pyridine (6) via a palladium-catalyzed phospination with diphenylphosphine (method 2) to give intermediate 8 (X = Br, I becomes PPh2) followed by Suzuki palladium-catalyzed cross-coupling reactions with arylboronic acids. Note that the change in reactivity of the core when switching between bromo and iodo at C3 results in a change in the order of cross-coupling steps.Open in a separate windowScheme 3Preparation of 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligands 3m–3ab from 2-iodo-3-iodo(or bromo)imidazo[1,2-a]pyridines 5 or 6via palladium-catalyzed Suzuki/phosphination or a phosphination/Suzuki cross-coupling reactions sequences.Palladium-catalyzed Suzuki/phosphination or phosphination/Suzuki reactions sequences of 2,3-diiodoimidazo[1,2-a]pyridine (5) or 3-bromo-2-iodoimidazo[1,2-a]pyridine (6)a
EntryRArMethod/substrateStep 1 (% yield)Step 2 (% yield)
1 t-Bu2,3-diOMeC6H31, 57a (59)3m (64)
2 t-Bu3,4-diOMeC6H31, 57b (54)3n (31)
3 t-Bu2,5-diOMeC6H31, 57c (58)3o (61)
4 t-Bu3,4,5-triOMeC6H21, 57d (50)3p (62)
5Cy2,3-diOMeC6H31, 57a (59)3q (46)
6Cy2,6-diOMeC6H31, 57e (40)3r (52)
7Cy3,4-diOMeC6H31, 57b (54)3s (52)
8Cy2,3,4-triOMeC6H21, 57f (58)3t (21)
9Cy3,4,5-triOMeC6H21, 57d (50)3u (55)
10Ph2,3-diOMeC6H32, 68 (70)3v (52)
11Ph2,5-diOMeC6H32, 68 (70)3w (68)
12Ph3,4-diOMeC6H32, 68 (70)3x (67)
13Ph2,3,4-triOMeC6H22, 68 (70)3y (52)
14Ph3,4,5-triOMeC6H22, 68 (70)3z (64)
15Ph4-FC6H42, 68 (70)3aa (40)
16Ph3-F,5-OMeC6H32, 68 (70)3ab (39)
Open in a separate windowaReaction conditions: 5, ArB(OH)2, Pd(PPh3)4 (5 mol%), Na2CO3 (2 equiv.), 1,4-dioxane/H2O (2 : 1) and HPR2 (1 equiv.), Pd(OAc)2 (2.5–5 mol%), Cs2CO3 (1.2 equiv.), DIPPF (2.5–10 mol%), 1,4-dioxane, 80 °C or 6, reverse sequence of reactions.With our library of functionalized imidazo[1,2-a]pyridine phosphorus ligands 3a–3ab in hand, we began to screen these ligands in Suzuki–Miyaura cross-coupling reactions to prepare sterically-hindered biaryl compounds. We chose the Suzuki–Miyaura cross-coupling reactions of m-bromo-xylene (9) and 2-methoxyphenylboronic acid (10) to give 2,6-dimethyl-(2-methoxy)biphenyl (11) as our model reaction as outlined in ii) acetate with 2.5 equivalents of base in 1,4-dioxane at 80 °C for 12–24 h. As expected, SPhos and XPhos were employed as our initial ligands to confirm our GC analyses of >99% conversion in our chosen model reaction (Entries 14–15). With the GC conditions validated, we screened selected ligands from 3a–3ab. It was clearly evident that the di-tert-butyl phosphorus ligands represented by 3a, 3m, and 3p were ineffective ligands in our model reactions (Entries 1–3). Furthermore, the diphenyl phosphorus ligands such as 3w, 3y, 3z, and 3ab showed low to moderate conversions in the model cross-coupling reactions (Entries 6–9). However, the dicyclohexyl phosphorus ligands shown by 3r and 3t showed greater than 99% conversions by GC analyses (Entries 4–5). Further exploration of ligand 3r with K3PO4 as the base, stirring the reaction overnight at room temperature or for 3 h at 80 °C showed inferior conversions (Entries 10–12). There was no conversion when a ligand was not used in the model reaction (Entry 13).Optimization of conditions for the Suzuki–Miyaura cross-coupling model reaction
EntryLigandConditionsConversiona (%)
13a12
23m20
33p14
4 3r >99 b
53t>99
63w21
73y55
83z46
93ab11
103rK3PO4 was used as base reaction was performed at 25 °C reaction was stirred for 3 h no ligand91
113r4
123r39
130
14SPhos>99
15XPhos>99
Open in a separate windowaBased on GC analyses of consumed 9.bIsolated yield of 96% was obtaisned.Furthermore, a Buchwald–Hartwig amination model study was investigated with our new imidazo[1,2-a]pyridine phosphorus ligands 3a–3ab. The Buchwald–Hartwig amination reaction of 4-chlorotoluene (12) with aniline (13) to give 4-methyl-N-phenylaniline (14) was screened with our ligands (
EntryLigandConditionsConversiona (%)
13a38
23d26
3 3e >99 b
43g29
53h54
63k71
73n0
83p0
93q>99
103r92
113s>99
123sK3PO4 was used as base83
133sK2CO3 was used as base0
143sKOt-Bu was used as base>99
153sNaOt-Bu was used as base>99
Open in a separate windowaBased on GC analyses of consumed 13.bIsolated yield of 76% was obtained.In summary, we have disclosed two complementary synthetic routes to 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligands 3a–3ab from 2-aminopyridine (1). In one method, 2-aminopyridine (1) underwent a copper-catalyzed iodine-mediated cyclization with arylacetylenes followed by palladium-catalyzed cross-coupling reactions with phosphines. In the second protocol, 2,3-diiodoimidazo[1,2-a]pyridine (5) or 3-bromo-2-iodoimidazo[1,2-a]pyridine (6) were prepared from 2-aminopyridine (1) followed by palladium-catalyzed phosphination/Suzuki or Suzuki/phosphination reactions sequences, respectively. We are currently exploring the scope and limitations of the 3-aryl-2-phosphinoimidazo[1,2-a]pyridine ligand 3r and 3e in our Suzuki–Miyaura and Buchwald–Hartwig amination cross-coupling reactions, respectively.  相似文献   
104.
First comparison of the VennerTM A.P. AdvanceTM versus the Macintosh laryngoscope for intubations by non‐anaesthetists: A manikin study     
Elizabeth M Marshall  Edmond O'Loughlin  Alex D Swann 《Emergency medicine Australasia : EMA》2014,26(3):262-267
  相似文献   
105.
Is mammography painful? A multicenter patient survey   总被引:2,自引:0,他引:2  
P C Stomper  D B Kopans  N L Sadowsky  M R Sonnenfeld  C A Swann  R S Gelman  J E Meyer  M S Jochelson  M S Hunt  P D Allen 《Archives of internal medicine》1988,148(3):521-524
Anecdotal reports of pain experienced during mammography have been a source of anxiety and concern for some women considering screening. To determine what asymptomatic women actually experience during mammography, a survey of 1847 women was performed at seven breast-imaging centers. Women recorded their experience on a six-point scale ranging from no discomfort to severe pain. Eighty-eight percent of the women experienced no discomfort (49%) or mild discomfort (39%). Only 9% experienced moderate discomfort; 1%, severe discomfort; and 1%, moderate pain. No woman had pain so severe that it would make her reconsider having a mammogram again. The degree of discomfort was slightly greater in women who complained of breast tenderness within three days prior to the mammogram but was not strongly related to age, menstrual status, or week of the menstrual cycle. We conclude that in a vast majority of women mammography causes no or mild physical discomfort and that actual pain is an uncommon occurrence.  相似文献   
106.
Some effects of the hypotensive drug diazoxide on the cardiovascular system     
W G Nayler  I McInnes  J B Swann  D Race  V Carson  T E Lowe 《American heart journal》1968,75(2):223-232
  相似文献   
107.
Functional and radiographic outcomes following distal ulna implant arthroplasty     
Kakar S  Swann RP  Perry KI  Wood-Wentz CM  Shin AY  Moran SL 《The Journal of hand surgery》2012,37(7):1364-1371
  相似文献   
108.
Free-floating vitreous cysts     
Peter Woolf Dip Optom  Peter G Swann BSc MappSc FBCO FAAO 《Clinical & experimental optometry》1999,82(1):17-19
  相似文献   
109.
A survey of ocular therapeutic pharmaceutical agents in optometric practice     
Katrina L. Schmid  Leisa M. Schmid  Peter G. Swann  Leo Hartley 《Clinical & experimental optometry》2000,83(1):16-31
  相似文献   
110.
Visual fields in glaucoma: a clinical overview     
Joanne M Wood  Peter G Swann  Efty P Stavrou 《Clinical & experimental optometry》2000,83(3):128-135
Static automated visual field testing is now an integral part of the detection and monitoring of primary open angle glaucoma. However, although many aspects of testing are automated, interpretation of the large amounts of data produced by these instruments is not. Two major challenges facing the practitioner are differentiating between the visual fields of a patient with early glaucoma and those of a normal patient, and identifying whether small reductions in sensitivity are due to a true defect or a product of other factors. This paper presents a clinical overview of how to systematically review visual field plots and how to recognise defects arising from patient factors, as well as some of the alternative testing techniques available for the assessment of the glaucoma patient.  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号