首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52024篇
  免费   7532篇
  国内免费   284篇
耳鼻咽喉   889篇
儿科学   1060篇
妇产科学   995篇
基础医学   4908篇
口腔科学   3581篇
临床医学   7127篇
内科学   12444篇
皮肤病学   909篇
神经病学   5281篇
特种医学   2839篇
外科学   7935篇
综合类   236篇
现状与发展   12篇
一般理论   11篇
预防医学   3950篇
眼科学   927篇
药学   1902篇
中国医学   58篇
肿瘤学   4776篇
  2024年   191篇
  2023年   1348篇
  2022年   788篇
  2021年   1439篇
  2020年   1708篇
  2019年   1179篇
  2018年   2102篇
  2017年   1891篇
  2016年   2367篇
  2015年   2541篇
  2014年   3184篇
  2013年   3873篇
  2012年   3241篇
  2011年   3219篇
  2010年   2844篇
  2009年   3275篇
  2008年   2937篇
  2007年   2702篇
  2006年   2779篇
  2005年   2463篇
  2004年   2059篇
  2003年   1923篇
  2002年   1784篇
  2001年   644篇
  2000年   480篇
  1999年   658篇
  1998年   805篇
  1997年   705篇
  1996年   694篇
  1995年   542篇
  1994年   426篇
  1993年   351篇
  1992年   244篇
  1991年   225篇
  1990年   183篇
  1989年   202篇
  1988年   163篇
  1987年   153篇
  1986年   135篇
  1985年   123篇
  1984年   107篇
  1983年   127篇
  1982年   117篇
  1981年   97篇
  1980年   72篇
  1978年   49篇
  1977年   65篇
  1976年   52篇
  1975年   48篇
  1974年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
996.
997.
998.
999.
1000.
Individual in situ polymerized fluorene chains 10–100 nm long linked by C–C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel–Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule–surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.Ever since the invention of the atomic force microscope (AFM) (1) and the first imaging applications, force spectroscopy has been applied to study the mechanical behavior of polymers (2); more complex chain-like biomolecules, e.g., DNA complementary strands (3); and proteins, subject to controlled extension (2) or applied force (4), mostly in solution and at room temperature. Reactive groups are chemically inserted at the ends and/or along each molecule to firmly bind some of them to suitably functionalized tips and sample surfaces. Irreversible jumps in curves of force vs. vertical separation may be associated in this way with the rupture of bonds or the unfolding of coiled subunits. If reproducible, the lowest peak in the histogram of the forces attained just before each jump is attributed to such an event in a single molecular chain or complementary pair. In the case of homogeneous polymers or protein segments, simulations based on two-state rate theory combined with a standard model of polymer nonlinear elasticity can reproduce such events, whereas reversible plateaus or continuous rises in the force may be associated with fast binding–rebinding processes or with large thermal fluctuations (2). Attention thus has focused on conformational changes strongly influenced by pulling speed or imposed force jumps (4) and also by external stimuli, e.g., optical excitation of inserted chromophores (5) or specific reactants or enzymes (6). Furthermore, mechanical forces recently were discovered by chemists as a unique stimulus to induce specific chemical reactions. In this so-called mechanochemistry, sonication typically is applied to polymer systems and is believed to result in a strong force acting on the weakest link in the chain, where the reaction takes place (7, 8). Regardless of the direct or indirect exposure to force, it is clear that the mechanics of polymer chains constrained in their surrounding environment is of utmost importance for a variety of biophysical and chemical processes as well as self-healing materials applications (9, 10).A few pulling studies have been conducted on polyelectrolytes unspecifically adsorbed on self-assembled monolayers via tunable electrostatic interactions (11), including DNA (12). They merely revealed noisy force plateaus, interpreted as continuous partial desorption of single chains, terminated by a drop to zero upon complete detachment from the surface. Despite the undisputed merit of these studies, little is known about the mechanical behavior of single molecular chains pulled off a surface, both defined and characterized on the atomic scale, in the absence of significant thermal fluctuations and drifts. Measurements at low temperature reduce the diffusion of adsorbates and provide an opportunity to determine the energetic landscape of specific molecules interacting with a surface under controlled conditions. As demonstrated here, the sliding and detachment mechanisms of individual polymer repeat units can then be inferred from the analysis of pulling experiments. A detailed interpretation of our results, based on a modified Frenkel–Kontorova (FK) model (13), also is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号