首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3485篇
  免费   207篇
  国内免费   20篇
耳鼻咽喉   33篇
儿科学   196篇
妇产科学   45篇
基础医学   350篇
口腔科学   68篇
临床医学   271篇
内科学   535篇
皮肤病学   72篇
神经病学   287篇
特种医学   244篇
外科学   472篇
综合类   367篇
一般理论   3篇
预防医学   217篇
眼科学   67篇
药学   221篇
中国医学   4篇
肿瘤学   260篇
  2023年   29篇
  2022年   55篇
  2021年   99篇
  2020年   42篇
  2019年   76篇
  2018年   101篇
  2017年   74篇
  2016年   90篇
  2015年   114篇
  2014年   139篇
  2013年   148篇
  2012年   192篇
  2011年   202篇
  2010年   168篇
  2009年   140篇
  2008年   202篇
  2007年   210篇
  2006年   181篇
  2005年   182篇
  2004年   180篇
  2003年   127篇
  2002年   106篇
  2001年   72篇
  2000年   80篇
  1999年   73篇
  1998年   57篇
  1997年   66篇
  1996年   67篇
  1995年   45篇
  1994年   34篇
  1993年   19篇
  1992年   26篇
  1991年   33篇
  1990年   32篇
  1989年   28篇
  1988年   31篇
  1987年   27篇
  1986年   30篇
  1985年   16篇
  1984年   22篇
  1983年   13篇
  1982年   11篇
  1981年   12篇
  1980年   10篇
  1979年   4篇
  1978年   8篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1967年   4篇
排序方式: 共有3712条查询结果,搜索用时 15 毫秒
91.
Rheologic predictors of the severity of the painful sickle cell crisis   总被引:4,自引:0,他引:4  
Ballas  SK; Larner  J; Smith  ED; Surrey  S; Schwartz  E; Rappaport  EF 《Blood》1988,72(4):1216-1223
Deformable sickle erythrocytes have been reported by Mohandas and Evans to be more adherent to vascular endothelium than rigid irreversibly sickled cells (ISC). To define the clinical implications of this finding we have determined genetic, hematological, clinical, and rheological characteristics of sickle erythrocytes obtained from 65 patients with sickle cell anemia and fetal hemoglobin (Hb F) levels less than 15%. The alpha-globin gene number had a significant effect on the hematological parameters, the percentage of dense cells, ISC number, and HB A2 levels. The presence or absence of alpha thalassemia, however, had no effect on the frequency and severity of the sickle cell painful crisis (r = 0.06, P greater than .05). RBC deformability, determined by an ektacytometer, showed great heterogeneity among patients with three or four alpha-globin genes. Linear regression analyses of the data showed significant positive correlation of the frequency and severity of the painful crisis with RBC deformability (r = 0.49, P less than .001), and negative correlations with the percentage of dense cells (r = -0.37, P = .002), and the percentage of ISC (r = -0.46, P less than .001). We propose that the more deformable the sickle RBC are, the greater their adherence to vascular endothelium, and the more they cause vaso-occlusive crises, RBC deformability and the percentage of dense cells (or ISC) seem to have a predictive value of the frequency and severity of painful crises in sickle cell anemia.  相似文献   
92.
Spatiotemporal regulation of signaling cascades is crucial for various biological pathways, under the control of a range of scaffolding proteins. The BNIP-2 and Cdc42GAP Homology (BCH) domain is a highly conserved module that targets small GTPases and their regulators. Proteins bearing BCH domains are key for driving cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, myoblast differentiation, and neuritogenesis. We previously showed that the BCH domain of p50RhoGAP (ARHGAP1) sequesters RhoA from inactivation by its adjacent GAP domain; however, the underlying molecular mechanism for RhoA inactivation by p50RhoGAP remains unknown. Here, we report the crystal structure of the BCH domain of p50RhoGAP Schizosaccharomyces pombe and model the human p50RhoGAP BCH domain to understand its regulatory function using in vitro and cell line studies. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-binding loop and a lipid-binding pocket that anchors prenylated RhoA. Interestingly, the β5-strand of the BCH domain is involved in an intermolecular β-sheet, which is crucial for inhibition of the adjacent GAP domain. A destabilizing mutation in the β5-strand triggers the release of the GAP domain from autoinhibition. This renders p50RhoGAP active, thereby leading to RhoA inactivation and increased self-association of p50RhoGAP molecules via their BCH domains. Our results offer key insight into the concerted spatiotemporal regulation of Rho activity by BCH domain–containing proteins.

Small GTPases are molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state and are primarily involved in cytoskeletal reorganization during cell motility, morphogenesis, and cytokinesis (1, 2). These small GTPases are tightly controlled by activators and inactivators, such as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), respectively (3, 4), which are multidomain proteins that are themselves regulated through their interactions with other proteins, lipids, secondary messengers, and/or by posttranslational modifications (57). Despite our understanding of the mechanisms of action of GTPases, GAPs, and GEFs, little is known about how they are further regulated by other cellular proteins in tightly controlled local environments.The BNIP-2 and Cdc42GAP Homology (BCH) domain has emerged as a highly conserved and versatile scaffold protein domain that targets small GTPases, their GEFs, and GAPs to carry out various cellular processes in a spatial, temporal, and kinetic manner (815). BCH domain–containing proteins are classified into a distinct functional subclass of the CRAL_TRIO/Sec14 superfamily, with ∼175 BCH domain–containing proteins (in which 14 of them are in human) present across a range of eukaryotic species (16). Some well-studied BCH domain–containing proteins include BNIP-2, BNIP-H (CAYTAXIN), BNIP-XL, BNIP-Sα, p50RhoGAP (ARHGAP1), and BPGAP1 (ARHGAP8), with evidence to show their involvement in cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, growth activation and suppression, myoblast differentiation, and neuritogenesis (1721). Aside from interacting with small GTPases and their regulators, some of these proteins can also associate with other signaling proteins, such as fibroblast growth factor receptor tyrosine kinases, myogenic Cdo receptor, p38-MAP kinase, Mek2/MP1, and metabolic enzymes, such as glutaminase and ATP-citrate lyase (1726). Despite the functional diversity and versatility of BCH domain–containing proteins, the structure of the BCH domain and its various modes of interaction remain unknown. The BCH domain resembles the Sec14 domain (from the CRAL-TRIO family) (16, 27, 28), a domain with lipid-binding characteristics, which may suggest that the BCH domain could have a similar binding strategy. However, to date, the binding and the role of lipids in BCH domain function remain inconclusive.Of the BCH domain–containing proteins, we have focused on the structure and function of p50RhoGAP. p50RhoGAP comprises an N-terminal BCH domain and a C-terminal GAP domain separated by a proline-rich region. We found that p50RhoGAP contains a noncanonical RhoA-binding motif in its BCH domain and is associated with GAP-mediated cell rounding (13). Further, we showed previously that deletion of the BCH domain dramatically enhanced the activity of the adjacent GAP domain (13); however, the full dynamics of this interaction is unclear. Previously, it has been reported that the BCH and other domains regulate GAP activity in an autoinhibited manner (18, 21, 29, 30) involving the interactions of both the BCH and GAP domains, albeit the mechanism remains to be investigated. It has also been shown that a lipid moiety on Rac1 (a Rho GTPase) is necessary for its inactivation by p50RhoGAP (29, 31), which may imply a role in lipid binding. An understanding of how the BCH domain coordinates with the GAP domain to affect the local activity of RhoA and other GTPases would offer a previously unknown insight into the multifaceted regulation of Rho GTPase inactivation.To understand the BCH domain–mediated regulation of p50RhoGAP and RhoA activities, we have determined the crystal structure of a homologous p50RhoGAP BCH domain from S. pombe for functional interrogation. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-interacting loop and a lipid-binding pocket. Our results show that the lipid-binding region of the BCH domain helps to anchor the prenylation tail of RhoA while the loop interacts directly with RhoA. Moreover, we show that a mutation in the β5-strand releases the autoinhibition of the GAP domain by the BCH domain. This renders the GAP domain active, leading to RhoA inactivation and the associated phenotypic effects in yeast and HeLa cells. The released BCH domain also contributes to enhanced p50RhoGAP–p50RhoGAP interaction. Our findings offer crucial insights into the regulation of Rho signaling by BCH domain–containing proteins.  相似文献   
93.
In equilibrium, disorder conspires with topological defects to redefine the ordered states of matter in systems as diverse as crystals, superconductors, and liquid crystals. Far from equilibrium, however, the consequences of quenched disorder on active condensed matter remain virtually uncharted. Here, we reveal a state of strongly disordered active matter with no counterparts in equilibrium: a dynamical vortex glass. Combining microfluidic experiments and theory, we show how colloidal flocks collectively cruise through disordered environments without relaxing the topological singularities of their flows. The resulting state is highly dynamical but the flow patterns, shaped by a finite density of frozen vortices, are stationary and exponentially degenerated. Quenched isotropic disorder acts as a random gauge field turning active liquids into dynamical vortex glasses. We argue that this robust mechanism should shape the collective dynamics of a broad class of disordered active matter, from synthetic active nematics to collections of living cells exploring heterogeneous media.

From a physicist’s perspective, flocks are ensembles of living or synthetic motile units collectively moving along a common emerging direction (14). They realize one of the most robust ordered states of matter observed over five orders of magnitude in scale and in systems as diverse as motility assays, self-propelled colloids, shaken grains, and actual flocks of birds (3, 510). The quiet flows of flocks are in stark contrast with the spatiotemporal chaos consistently reported and predicted in active nematic liquid crystals, another abundant form of ordered active matter realized in biological tissues, swimming cells, cellular extracts, and shaken rods (2, 11). Active nematics do not support any form of long-range order (4, 12). Their structure is continuously bent and destroyed by the proliferation and annihilation of singularities in their local orientation: topological defects (11, 1315). Unlike in active nematics, topological defects in flocking matter are merely transient excitations which annihilate rapidly and allow uniaxial order to extend over system-spanning scales (4).This idyllic view of the ordered phases of active liquids is limited, however, to pure systems. Disorder is known to profoundly alter the stability of topological defects and the corresponding ordered states in equilibrium condensed matter (1618), but its role in active fluids remains virtually uncharted territory. All previous studies (1926), including our own early experiments (22), have been limited to weak disorder and smooth perturbations around topologically trivial states. Unlike in equilibrium, no available experiment, simulation, or theory has ever demonstrated or predicted disorder-induced topological excitations in active matter.In this paper we show how isotropic disorder generically challenges the extreme robustness of flocking matter to topological defects. We map the full phase behavior of colloidal flocks navigating through disordered lattice of obstacles and reveal an unanticipated state of active matter: a dynamical vortex glass. In dynamical vortex glasses, millions of self-propelled particles can steadily cruise through disorder, maintaining local orientational order and without relaxing the topological singularities of their flows. The associated flow patterns are exponentially degenerated and shaped by amorphous ensembles of frozen topological defects, yielding a dynamical state akin to the static vortex-glass phase of dirty superconductors and random-gauge magnets (2729). Building a theory of flock hydrodynamics beyond the spin-wave approximation, we elucidate the emergence and stabilization of topological vortices by quenched disorder. Finally, we discuss the universality of the dynamical vortex glass phase beyond the specifics of polar active matter and colloidal flocks.  相似文献   
94.
95.
96.
Relationship between white blood cell count and incident hypertension   总被引:6,自引:0,他引:6  
BACKGROUND: Elevated white blood cell (WBC) count is considered to be prospectively associated with cardiovascular disease. However, its relationship to hypertension, independent of smoking and other established cardiovascular risk factors, is not clear, especially among women. METHODS: We used data from a large population-based study in Wisconsin (Beaver Dam Eye study) to examine the prospective association between elevated WBC count and incident hypertension among 2459 hypertension-free women (48.6%) and men (51.4%) after adjusting for, and stratifying by smoking and several other potential confounding factors. RESULTS: In multivariable proportional hazards models, increasing tertiles of WBC count was associated with increased risk ratios (RR) of hypertension in the whole cohort (WBC count tertiles 1-3; RR 1, 1.2, 1.7; P <.01), and separately among women (WBC count tertiles 1-3; RR 1, 1.1, 1.4; P <.05) and men (WBC count tertiles 1-3; RR 1, 1.3, 1.9; P <.01). Results from subsequent analyses stratified by smoking and several other related factors were consistent with this finding. CONCLUSIONS: Elevated WBC count is associated with incident hypertension among women and men independent of smoking and most traditional cardiovascular risk factors in this predominantly white cohort. Further research is required to determine whether this association is true among racial minorities (eg, African Americans), and independent of C-reactive protein, a more specific marker of inflammation.  相似文献   
97.
98.
99.
The growing problem of antibiotic resistant bacteria, along with a dearth of new antibiotics, has redirected attention to the search for alternative antimicrobial agents. Conjugated oligoelectrolytes (COEs) are an emerging class of antimicrobial agents which insert into bacterial cell membranes and are inhibitory against a range of Gram-positive and Gram-negative bacteria. In this study, the extent of COE resistance that Enterococcus faecalis could achieve was studied. Enterococci are able to grow in hostile environments and develop resistance to membrane targeting antibiotics such as daptomycin in clinical settings. Herein we expand our knowledge of the antimicrobial mechanism of action of COEs by developing COE-resistant strains of E. faecalis OG1RF. Evolution studies yielded strains with a moderate 4–16 fold increase in antimicrobial resistance relative to the wild type. The resistant isolates accumulated agent-specific mutations associated with the liaFSR operon, which is a cell envelope-associated stress-response sensing and regulating system. The COE resistant isolates displayed significantly altered membrane fatty acid composition. Subsequent, exogenous supplementation with single fatty acids, which were chosen based on those dominating the fatty acid profiles of the mutants, increased resistance of the wild-type E. faecalis to COEs. In combination, genetic, fatty acid, and uptake studies support the hypothesis that COEs function through insertion into and disruption of membranes and that the mechanism by which this occurs is specific to the disrupting agent. These results were validated by a series of biophysical experiments showing the tendency of COEs to accumulate in and perturb adapted membrane extracts. Collectively, the data support that COEs are promising antimicrobial agents for targeting E. faecalis, and that there is a high barrier to the emergence of severely resistant strains constrained by biological limits of membrane remodeling that can occur in E. faecalis.

COEs are emerging antimicrobials to combat drug resistant infections and to which bacteria develop only limited resistance.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号