首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3025篇
  免费   140篇
  国内免费   10篇
耳鼻咽喉   5篇
儿科学   134篇
妇产科学   74篇
基础医学   411篇
口腔科学   34篇
临床医学   250篇
内科学   757篇
皮肤病学   71篇
神经病学   252篇
特种医学   55篇
外科学   367篇
综合类   6篇
一般理论   1篇
预防医学   114篇
眼科学   65篇
药学   164篇
中国医学   10篇
肿瘤学   405篇
  2024年   2篇
  2023年   18篇
  2022年   35篇
  2021年   53篇
  2020年   46篇
  2019年   56篇
  2018年   75篇
  2017年   54篇
  2016年   50篇
  2015年   79篇
  2014年   113篇
  2013年   105篇
  2012年   187篇
  2011年   200篇
  2010年   132篇
  2009年   124篇
  2008年   202篇
  2007年   205篇
  2006年   196篇
  2005年   193篇
  2004年   198篇
  2003年   181篇
  2002年   174篇
  2001年   54篇
  2000年   29篇
  1999年   36篇
  1998年   31篇
  1997年   34篇
  1996年   37篇
  1995年   29篇
  1994年   20篇
  1993年   16篇
  1992年   21篇
  1991年   19篇
  1990年   20篇
  1989年   22篇
  1988年   17篇
  1987年   16篇
  1986年   6篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1980年   10篇
  1979年   10篇
  1978年   7篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1973年   2篇
排序方式: 共有3175条查询结果,搜索用时 15 毫秒
31.
Geometric cis, trans isomers, derivatives of 2-substituted-1,3-dioxanes were designed and studied as antimuscarinic agents. The synthesized compounds were evaluated as perchlorides and methiodides by functional tests with rabbit vas deferens (putative M1), guinea-pig heart (M2) and guinea-pig ileum (M3). The effect of the replacement of a trimethylammonium group with a dimethysulfonium in the two rings was also evaluated. Pharmacological results indicate that the 1,3-dioxane nucleus shows the highest stereoselective values on the studied receptors.  相似文献   
32.
33.
Deep vein thrombosis results from the cooperative action of leukocytes, platelets, and endothelial cells. The proline-rich tyrosine kinase Pyk2 regulates platelet activation and supports arterial thrombosis. In this study, we combined pharmacological and genetic approaches to unravel the role of Pyk2 in venous thrombosis. We found that mice lacking Pyk2 almost completely failed to develop deep venous thrombi upon partial ligation of the inferior vena cava. Pyk2-deficient platelets displayed impaired exposure of phosphatidylserine and tissue factor expression by endothelial cells and monocytes was completely prevented by inhibition of Pyk2. In human umbilical vein endothelial cells (HUVEC), inhibition of Pyk2 hampered IL-1β-induced expression of VCAM and P-selectin, and von Willebrand factor release. Pyk2-deficient platelets showed defective adhesion on von Willebrand factor and reduced ability to bind activated HUVEC under flow. Moreover, inhibition of Pyk2 in HUVEC strongly reduced platelet adhesion. Similarly, Pyk2-deficient neutrophils were unable to efficiently roll and adhere to immobilized endothelial cells under venous flow conditions. Moreover, platelets and neutrophils from Pyk2-knockout mice showed defective ability to form heterogeneous aggregates upon stimulation, while platelet monocyte interaction occurred normally. Consequently, platelet neutrophil aggregates, abundant in blood of wild-type mice upon inferior vena cava ligation, were virtually undetectable in Pyk2-knockout mice. Finally, we found that expression of Pyk2 was required for NETosis induced by activated platelets. Altogether our results demonstrate a critical role of Pyk2 in the regulation of the coordinated thromboinflammatory responses of endothelial cells, leukocytes and platelets leading to venous thrombosis. Pyk2 may represent a novel promising target in the treatment of deep vein thrombosis.  相似文献   
34.
35.
36.
37.
The ecology and genetic diversity of the model yeast Saccharomyces cerevisiae before human domestication remain poorly understood. Taiwan is regarded as part of this yeast''s geographic birthplace, where the most divergent natural lineage was discovered. Here, we extensively sampled the broadleaf forests across this continental island to probe the ancestral species’ diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between the natural lineages, and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions that contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.

The yeast genus Saccharomyces, which includes S. cerevisiae, is a powerful model system for revealing patterns of genomic variation underlying reproductive isolation and adaptation in eukaryotic microorganisms. Surveys of population genetic data have been used in S. cerevisiae to date the origin of key domestication events (Gallone et al. 2016; Duan et al. 2018; Peter et al. 2018), to determine life cycle frequencies in nature (Tsai et al. 2008), to determine the genomic basis of adaptation at continental scale (Duan et al. 2018; Peter et al. 2018), and, more recently, to establish its geographical origin and dispersal history (Xia et al. 2017). Phylogenomic analyses of the Saccharomyces sensu stricto complex and extensive sequencing of collections across the world suggest that S. cerevisiae originated in East Asia (Duan et al. 2018; Peter et al. 2018). The 1011 Genome Project—the most broad large-scale yeast population genomic study—discovered that three wild isolates from Taiwan showed an unprecedented high genetic diversity compared with populations from the rest of the world (Peter et al. 2018). Population genomics of 266 domestic and wild isolates in China revealed six wild lineages from primeval forests. The newly identified CHN-IX group represents the most diverged lineage (Duan et al. 2018). Isolates from this group and the three Taiwanese isolates were grouped into a single lineage that showed a disjunct geographic distribution (Bendixsen et al. 2021). Although considerable knowledge is available on the biogeography and population genetics of plants and animals across continents (Whittaker et al. 2017), little is known about how eukaryotic microorganisms such as S. cerevisiae disperse, establish, reproduce, and persist in nature (Liti 2015).Most S. cerevisiae biology has been based on experiments on a handful of laboratory domesticated strains, but comprehensive analyses of the ecology and evolutionary biology of S. cerevisiae in the wild are still unavailable. In nature, S. cerevisiae have been isolated from the bark, fruits, surrounding soil, and leaves of plants belonging to several different families (Naumov et al. 2013), with early reports suggesting that the yeast is most successfully isolated from the oak family Fagaceae (Sniegowski et al. 2002; Sampaio and Gonçalves 2008; Wang et al. 2012). S. cerevisiae contains high genetic diversity in certain populations, including lineage-specific variants that display clear population structures (Barnett 1992; Wang et al. 2012; Cromie et al. 2013; Strope et al. 2015; Gallone et al. 2016; Gonçalves et al. 2016; Zhu et al. 2016; Duan et al. 2018; Legras et al. 2018; Peter et al. 2018) and explain phenotypic variance similar to common variants (Fournier et al. 2019). Samples from natural habitats tend to be homozygous diploids forming unique populations with minimal genetic admixture, whereas lineages associated with human activities were likely heterozygous, containing higher ploidy and greater genetic admixture leading to a mosaic genome makeup (Diezmann and Dietrich 2009; Liti et al. 2009; Wang et al. 2012; Almeida et al. 2015). The diverse natural lineages of S. cerevisiae present in East Asia provide an excellent opportunity to study the natural diversity of this species, which was previously believed to be fully domesticated (Fay and Benavides 2005).Taiwan is a continental shelf island with the fifth highest tree density in the world (Crowther et al. 2015). Among the 13 climate-related forests types in Taiwan, five are Fagaceae-dominated natural forests on low- and mid-elevation mountains (Li et al. 2013), thus a potentially ideal natural habitat for S. cerevisiae. Taiwan also harbors a high phylogenetic diversity of flowering plants (53 out of 64 angiosperm orders present under the APG IV classification system) (Lin and Chung 2017) and endemism compared with other oceanic islands (Hsieh 2002), raising the possibility that the associated microbial populations are genetically different from their continental counterparts. Here, we set out to characterize the intra-genetic diversity, relative abundance, and distribution of S. cerevisiae in Taiwanese forests over 4 yr of broad sampling. Our study provides novel insights of the predomestication phase of S. cerevisiae and broadens our understanding of the ecological and biogeographic implications before anthropogenic impacts.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号