To assess a 6-month nutritional and physical activity intervention program on the nutritional status of overweight or obese and not very active 8-14 years old children by means of a controlled pre-post design (ACTIVA’T program).
Method
Pre-post study in 8-14 years old overweight or obese and low active children from Vilafranca del Penedès (Barcelona, Spain) randomized in control group (n = 51, 47.1% girls, nutritional intervention and ≤3 h/wk physical activity) and ACTIVA’T group (n = 45, 37.8% girls, nutritional and physical activity ≥5 h/wk intervention). Body mass index, waist/height index, and diet quality by means of KIDMED test at the beginning and at the end of the program were assessed. During the intervention, each participant was accompanied by a relative (father or mother) who performed the same activities as the children.
Results
Dietary recommendations have positively changed the habits of both ACTIVA’T and control group. The reversion in the prevalence of overweight and obesity was 93.8% and 58.6%, respectively, in the ACTIVA’T group, compared to 25.0% and 35.8% in the control group. Abdominal obesity was decreased from 42.2% to 17.8% in the ACTIVA’T group and from 47.1% to 27.5% in the control group.
Conclusions
The program ACTIVA’T (nutritional education and physical activity promotion) improves the quality of diet and reverses the prevalence of overweight and obesity in the underactive child population. 相似文献
Background and aimsConsuming pulses (dry beans, dry peas, chickpeas, lentils) over several weeks can improve vascular function and decrease cardiovascular disease risk; however, it is unknown whether pulses can modulate postprandial vascular responses. The objective of this study was to compare different bean varieties (black, navy, pinto, red kidney) and white rice for their acute postprandial effects on vascular and metabolic responses in healthy individuals.Methods and resultsThe study was designed as a single-blinded, randomized crossover trial with a minimum 6 days between consumption of the food articles. Vascular tone (primary endpoint), haemodynamics and serum biochemistry (secondary endpoints) were measured in 8 healthy adults before and at 1, 2, and 6 h after eating ¾ cup of beans or rice. Blood pressure and pulse wave velocity (PWV) were lower at 2 h following red kidney bean and pinto bean consumption compared to rice and navy bean, respectively (p < 0.05). There was greater vasorelaxation 6 h following consumption of darker-coloured beans, as shown by decreased vascular tone: PWV was lower after consuming black bean compared to pinto bean, augmentation pressure was lower after consuming black bean compared to rice and pinto bean, and wave reflection magnitude was lower after consuming red kidney bean and black bean compared to rice, navy bean, and pinto bean (p < 0.05). LDL-cholesterol concentrations were lower 6 h after black bean consumption compared to rice (p < 0.05).ConclusionOverall, red kidney and black beans, the darker-coloured beans, elicited a positive effect on the tensile properties of blood vessels, and this acute response may provide insight for how pulses modify vascular function. 相似文献
Although substantial progress has been made over the past 40 years in treating patients with cancer, effective therapies for those who are diagnosed with advanced metastatic disease are still few and far between. Cancer cells do not exist in isolation: rather, they exist within a complex microenvironment composed of stromal cells and extracellular matrix. Within this tumour microenvironment exists an interplay between the two main stromal cell subtypes, cancer-associated fibroblasts (CAFs) and immune cells, that are important in controlling metastasis. A complex network of paracrine signalling pathways between CAFs, immune cells and tumour cells are involved at multiple stages of the metastatic process, from invasion and intravasation at the primary tumour site to extravasation and colonisation in the metastatic site. Heterogeneity and plasticity within stromal cell populations also contribute to the complexity. Although many of these processes are likely to be common to a number of metastatic sites, we will describe in detail the interplay within the liver, a preferred site of metastasis for many tumours. A greater understanding of these networks provides opportunities for the design of new therapeutic approaches for targeting the metastatic disease.Subject terms: Cancer microenvironment, Mechanisms of disease相似文献
Triazole resistance in Aspergillus spp. is emerging and complicates prophylaxis and treatment of invasive aspergillosis (IA) worldwide. New polymerase chain reaction (PCR) tests on broncho-alveolar lavage (BAL) fluid allow for detection of triazole resistance at a genetic level, which has opened up new possibilities for targeted therapy. In the absence of clinical trials, a modelling study delivers estimates of the added value of resistance detection with PCR, and which empiric therapy would be optimal when local resistance rates are known.
Design
A decision-analytic modelling study was performed based on epidemiological data of IA, extended with estimated dynamics of resistance rates and treatment effectiveness. Six clinical strategies were compared that differ in use of PCR diagnostics (used vs not used) and in empiric therapeutic choice in case of unknown triazole susceptibility: voriconazole, liposomal amphotericin B (LAmB) or both. Outcome measures were proportion of correct treatment, survival and serious adverse events.
Results
Implementing aspergillus PCR tests was projected to result in residual treatment-susceptibility mismatches of <5% for a triazole resistance rate up to 20% (using voriconazole). Empiric LAmB outperformed voriconazole at resistance rates >5–20%, depending on PCR use and estimated survival benefits of voriconazole over LAmB. Combination therapy of voriconazole and LAmB performed best at all resistance rates, but the advantage over the other strategies should be weighed against the expected increased number of drug-related serious adverse events. The advantage of combination therapy over LAmB monotherapy became smaller at higher triazole resistance rates.
Conclusions
Introduction of current aspergillus PCR tests on BAL fluid is an effective way to increase the proportion of patients that receive targeted therapy for IA. The results indicate that close monitoring of background resistance rates and adverse drug events are important to attain the potential benefits of LAmB. The choice of strategy ultimately depends on the probability of triazole resistance, the availability of PCR and individual patient characteristics. 相似文献
BACKGROUND AND PURPOSE:Primary posterior fossa tumors comprise a large group of neoplasias with variable aggressiveness and short and long-term outcomes. This study aimed to validate the clinical usefulness of a radiologic decision flow chart based on previously published neuroradiologic knowledge for the diagnosis of posterior fossa tumors in children.MATERIALS AND METHODS:A retrospective study was conducted (from January 2013 to October 2019) at 2 pediatric referral centers, Children''s Hospital of Philadelphia, United States, and Great Ormond Street Hospital, United Kingdom. Inclusion criteria were younger than 18 years of age and histologically and molecularly confirmed posterior fossa tumors. Subjects with no available preoperative MR imaging and tumors located primarily in the brain stem were excluded. Imaging characteristics of the tumors were evaluated following a predesigned, step-by-step flow chart. Agreement between readers was tested with the Cohen κ, and each diagnosis was analyzed for accuracy.RESULTS:A total of 148 cases were included, with a median age of 3.4 years (interquartile range, 2.1–6.1 years), and a male/female ratio of 1.24. The predesigned flow chart facilitated identification of pilocytic astrocytoma, ependymoma, and medulloblastoma sonic hedgehog tumors with high sensitivity and specificity. On the basis of the results, the flow chart was adjusted so that it would also be able to better discriminate atypical teratoid/rhabdoid tumors and medulloblastoma groups 3 or 4 (sensitivity = 75%–79%; specificity = 92%–99%). Moreover, our adjusted flow chart was useful in ruling out ependymoma, pilocytic astrocytomas, and medulloblastoma sonic hedgehog tumors.CONCLUSIONS:The modified flow chart offers a structured tool to aid in the adjunct diagnosis of pediatric posterior fossa tumors. Our results also establish a useful starting point for prospective clinical studies and for the development of automated algorithms, which may provide precise and adequate diagnostic tools for these tumors in clinical practice.In the past 10 years, there has been an exponential increase in knowledge of the molecular characteristics of pediatric brain tumors, which was only partially incorporated in the 2016 World Health Organization Classification of Tumors of the Central Nervous System.1 The main update in the 2016 Classification was the introduction of the molecular profile of a tumor as an important factor for predicting different biologic behaviors of entities which, on histology, look very similar or even indistinguishable.2 A typical example is the 4 main groups of medulloblastoma: wingless (WNT), sonic hedgehog (SHH) with or without the p53 mutation, group 3, and group 4. Although they may appear similar on microscopy, these categories have distinct molecular profiles, epidemiology, prognosis, and embryologic origin.3Subsequent to the publication of the 2016 World Health Organization Classification, further studies have identified even more molecular subgroups of medulloblastoma with possible prognostic implications4 and also at least 3 new molecular subgroups of atypical teratoid/rhabdoid tumor (AT/RT)5 and several subgroups of ependymoma.6 MR imaging shows promise as a technique for differentiating histologic tumors and their molecular subgroups. This capability relies on not only various imaging characteristics but also the location and spatial extension of the tumor, evident on MR imaging, which can be traced to the embryologic origin of the neoplastic cells.5,7-10One approach to the challenge of identifying imaging characteristics of different tumors in children is to use artificial intelligence. Yet despite this exciting innovation, correctly identifying the location of the mass and its possible use as an element for differential diagnosis still requires the expertise of an experienced radiologist. Previously, D''Arco et al11 proposed a flow chart (Fig 1) for the differential diagnosis of posterior fossa tumors in children based on epidemiologic, imaging signal, and location characteristics of the neoplasm. The aims of the current study were the following: 1) to validate, in a retrospective, large cohort of posterior fossa tumors from 2 separate pediatric tertiary centers, the diagnostic accuracy of that flow chart, which visually represents the neuroadiologist''s mental process in making a diagnosis of posterior fossa tumors in children, 2) to describe particular types of posterior fossa lesions that are not correctly diagnosed by the initial flow chart, and 3) to provide an improved, clinically accessible flow chart based on the results.Open in a separate windowFIG 1.Predesigned radiologic flow chart created according to the literature before diagnostic accuracy analysis. The asterisk indicates brain stem tumors excluded from the analysis. Double asterisks indicate relative to gray matter. Modified with permission from D''Arco et al.11相似文献
BACKGROUND AND PURPOSE:Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions.MATERIALS AND METHODS:We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability.RESULTS:Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = −3.164 for MPRAGE; z = −2.066 for TSE; z = −2.645 for FLAIR; all P < .05).CONCLUSIONS:Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.Head motion is a common cause of image degradation in brain MR imaging. Motion artifacts negatively impact MR image quality and therefore radiologists’ capacity to read the images, ultimately affecting patient clinical care.1 Motion artifacts are more common in noncompliant patients,2 but even in compliant adults, intrascan movement is reported in at least 10% of cases.3 For children who require high-resolution MR images, obtaining optimal image quality can be challenging, owing to the requirement to stay still over long durations needed for acquisition.4 Sedation can be an option, but it carries higher risks, costs, and preparation and recovery time.5In conditions such as intractable focal epilepsy, identification of an epileptogenic lesion is clinically important to guide surgical treatment. However, these lesions can be visually subtle, particularly in children in whom subtle cortical dysplasias are more common.6 Dedicated epilepsy MR imaging protocols use high-resolution 3D sequences to allow better cortical definition and free reformatting of orientation but involve acquisition times in the order of minutes, so data collection becomes more sensitive to motion.7For children in particular, multiple strategies are available for minimizing motion during MR examinations. Collaboration with play specialists using mock scanners and training or projecting a cartoon are good approaches to reduce anxiety.8,9 These tools are not always available in clinical radiology and, even with these strategies, motion can still be an issue.10 Different scanning approaches to correct for intrascan motion have been proposed. Broadly, prospective methods track head motion in real time and modify the acquisition directions accordingly.11 These approaches are applicable to a wide range of sequences but require optical systems with external tracking markers, sometimes uncomfortable or impractical, and extra setup can ultimately result in longer examinations. Furthermore, these approaches may also not be robust to continuous motion.11-13 Retrospective techniques have also been proposed, in some cases relying on imaging navigators that are not compatible with all standard sequences or contrasts.12Here, we use a more general retrospective motion correction technique: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). In this method, k-space samples are reordered to enable retrospective motion correction during image reconstruction.14 Our hypothesis is that DISORDER improves clinical MR imaging quality and readability. To assess its use for clinical sequences, we acquired a dedicated epilepsy MR imaging protocol in 32 children across a wide age range. We used both objective image quality metrics and expert neuroradiologist ratings to evaluate the outcome after motion correction. 相似文献
To determine frequencies, interlaboratory reproducibility, clinical ratings, and prognostic implications of neural antibodies in a routine laboratory setting in patients with suspected neuropsychiatric autoimmune conditions.
Methods
Earliest available samples from 10,919 patients were tested for a broad panel of neural antibodies. Sera that reacted with leucine-rich glioma-inactivated protein 1 (LGI1), contactin-associated protein-2 (CASPR2), or the voltage-gated potassium channel (VGKC) complex were retested for LGI1 and CASPR2 antibodies by another laboratory. Physicians in charge of patients with positive antibody results retrospectively reported on clinical, treatment, and outcome parameters.
Results
Positive results were obtained for 576 patients (5.3%). Median disease duration was 6 months (interquartile range 0.6–46 months). In most patients, antibodies were detected both in CSF and serum. However, in 16 (28%) patients with N-methyl-d-aspartate receptor (NMDAR) antibodies, this diagnosis could be made only in cerebrospinal fluid (CSF). The two laboratories agreed largely on LGI1 and CASPR2 antibody diagnoses (κ = 0.95). The clinicians (413 responses, 71.7%) rated two-thirds of the antibody-positive patients as autoimmune. Antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), NMDAR (CSF or high serum titer), γ-aminobutyric acid-B receptor (GABABR), and LGI1 had ≥ 90% positive ratings, whereas antibodies against the glycine receptor, VGKC complex, or otherwise unspecified neuropil had ≤ 40% positive ratings. Of the patients with surface antibodies, 64% improved after ≥ 3 months, mostly with ≥ 1 immunotherapy intervention.
Conclusions
This novel approach starting from routine diagnostics in a dedicated laboratory provides reliable and useful results with therapeutic implications. Counseling should consider clinical presentation, demographic features, and antibody titers of the individual patient.
ABSTRACTThe aim of the study was to assess the use of different positioning systems and sampling frequencies to measure spatial-positioning variables in team sports. Articles were selected when the sampling frequency was detailed. 2,194 articles were identified and 59 works were selected for the systematic review. The sampling frequency used to measure tactical behaviour differed considerably among studies. For Global Navigation Satellite System, the sampling frequency ranged from 5- to 15 Hz for raw data, the most commonly used sampling frequency being 5 Hz. For Optic-based tracking systems, the sampling frequency ranged from 10- to 30 Hz. For Local Position System, the sampling frequency ranged from 45- to 100 Hz, the most commonly used sampling frequency being 42 Hz and 57.7 Hz. There is no common criterion in the sampling frequency used to measure each tactical variable. Further studies should investigate the impact of the sampling frequency on the measurement of the tactical variables. 相似文献
Introduction: Boron-containing compounds induce effects on immune responses. Such effects are interesting to the biomedical field for the development of therapeutic tools to modulate the immune system.
Areas covered: The scope of BCC use to modify immune responses is expanding, mainly with regard to inflammatory diseases. The information was organized to demonstrate the breadth of reported effects. BCCs act as modulators of innate and adaptive immunity, with the former including regulation of cluster differentiation and cytokine production. In addition, BCCs exert effects on inflammation induced by infectious and noninfectious agents, and there are also reports regarding their effects on mechanisms involving hypersensitivity and transplants. Finally, the authors discuss the beneficial effects of BCCs on pathologies involving various targets and mechanisms.
Expert opinion: Some BCCs are currently used as drugs in humans. The mechanisms by which these BCCs modulate immune responses, as well as the required structure–activity relationship for each observed mechanism of action, should be clarified. The former will allow for the development of improved immunomodulatory drugs with extensive applications in medicine. Patenting trends involve claims concerning the synthesis and actions of identified molecules with a defined profile regarding cytokines, cell differentiation, proliferation, and antibody production. 相似文献