首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2197篇
  免费   76篇
  国内免费   8篇
耳鼻咽喉   22篇
儿科学   67篇
妇产科学   32篇
基础医学   189篇
口腔科学   45篇
临床医学   267篇
内科学   582篇
皮肤病学   24篇
神经病学   136篇
特种医学   310篇
外科学   241篇
综合类   20篇
预防医学   111篇
眼科学   40篇
药学   88篇
肿瘤学   107篇
  2023年   11篇
  2021年   26篇
  2020年   19篇
  2019年   37篇
  2018年   45篇
  2017年   30篇
  2016年   36篇
  2015年   40篇
  2014年   49篇
  2013年   72篇
  2012年   83篇
  2011年   104篇
  2010年   84篇
  2009年   78篇
  2008年   105篇
  2007年   126篇
  2006年   113篇
  2005年   82篇
  2004年   102篇
  2003年   72篇
  2002年   91篇
  2001年   24篇
  2000年   22篇
  1999年   21篇
  1998年   62篇
  1997年   68篇
  1996年   62篇
  1995年   55篇
  1994年   51篇
  1993年   38篇
  1992年   32篇
  1991年   20篇
  1990年   26篇
  1989年   28篇
  1988年   45篇
  1987年   26篇
  1986年   38篇
  1985年   39篇
  1984年   24篇
  1983年   23篇
  1982年   20篇
  1981年   11篇
  1980年   12篇
  1977年   11篇
  1976年   19篇
  1975年   10篇
  1970年   9篇
  1969年   7篇
  1967年   8篇
  1965年   10篇
排序方式: 共有2281条查询结果,搜索用时 0 毫秒
41.
Intramyocellular triacylglycerol (IMTG) accumulation is highly associated with insulin resistance and metabolic complications of obesity (lipotoxicity), whereas comparable IMTG accumulation in endurance-trained athletes is associated with insulin sensitivity (the athlete’s paradox). Despite these findings, it remains unclear whether changes in IMTG accumulation and metabolism per se influence muscle-specific and systemic metabolic homeostasis and insulin responsiveness. By mediating the rate-limiting step in triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL) has been proposed to influence the storage/production of deleterious as well as essential lipid metabolites. However, the physiological relevance of ATGL-mediated triacylglycerol hydrolysis in skeletal muscle remains unknown. To determine the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes in the context of obesity, we generated mice with targeted deletion or transgenic overexpression of ATGL exclusively in skeletal muscle. Despite dramatic changes in IMTG content on both chow and high-fat diets, modulation of ATGL-mediated IMTG hydrolysis did not significantly influence systemic energy, lipid, or glucose homeostasis, nor did it influence insulin responsiveness or mitochondrial function. These data argue against a role for altered IMTG accumulation and lipolysis in muscle insulin resistance and metabolic complications of obesity.Obesity is a global public health problem and a major risk factor for insulin resistance and type 2 diabetes. These disorders are characterized by excess lipid accumulation in multiple tissues, primarily as triacylglycerols (TAGs). The lipotoxicity hypothesis suggests that this lipid excess promotes cellular dysfunction and cell death, which ultimately contribute to insulin resistance and metabolic disease (1). However, intracellular TAG accumulation is not always associated with adverse metabolic outcomes, suggesting that TAGs themselves are not pathogenic (2). In contrast, other non-TAG lipid metabolites such as fatty acids (FAs), diacylglycerols (DAGs), and ceramides have been shown to influence glucose homeostasis and insulin action by interfering with insulin signaling and glucose transport, promoting endoplasmic reticulum stress and mitochondrial dysfunction, and activating inflammatory and apoptotic pathways (reviewed in ref. 3). Nevertheless, the precise identities and sources of these bioactive lipid intermediates remain elusive (4,5). Furthermore, whether intracellular TAGs serve as a protective sink or a toxic source of deleterious lipid metabolites that contribute to insulin resistance remains unclear (6).Since skeletal muscle is the major contributor to insulin-mediated glucose disposal, lipid excess in this tissue could have serious implications for systemic glucose homeostasis and insulin responsiveness (7). Indeed, numerous studies have demonstrated a strong association between intramyocellular triacylglycerol (IMTG) accumulation and insulin resistance (reviewed in ref. 8). In contrast, endurance exercise training is characterized by IMTG accumulation and insulin sensitivity (the athlete’s paradox) (2). This variable association between IMTG accumulation and insulin responsiveness has largely been attributed to differences in the balance between lipid delivery and muscle oxidative capacity (810). Not surprisingly then, most studies have focused on the impact of muscle FA uptake and/or oxidation on glucose homeostasis and insulin action (11). However, experimental manipulations of these parameters cannot distinguish among the effects of IMTGs, IMTG metabolism, and other lipid intermediates. Furthermore, accumulating evidence suggests that muscle oxidative capacity cannot entirely explain differences in IMTGs or insulin responsiveness (12). These findings have led to speculation that dynamic IMTG metabolism (i.e., TAG synthesis or hydrolysis) may be critically involved in lipid-induced insulin resistance (6). However, few studies have specifically addressed the contribution of IMTG metabolism per se to this process.The regulated storage and release of IMTGs remain poorly understood, but require the coordinated action of synthetic enzymes (i.e., diacylglycerol acyltransferases [DGATs]), hydrolytic enzymes (i.e., adipose triglyceride lipase [ATGL] and hormone sensitive lipase [HSL]), and other lipid droplet proteins (6). Specifically, modulating IMTG synthesis in murine skeletal muscle alters IMTG content and systemic glucose homeostasis, supporting a role for IMTG metabolism in metabolic disease (1315). However, the metabolic impact of modulating IMTG hydrolysis in vivo remains unclear. Global deletion of either ATGL (1619) or HSL (20) has produced variable results. The former, but not the latter, results in massive IMTG accumulation with improvement in systemic glucose homeostasis, suggesting that inhibition of ATGL-mediated TAG hydrolysis protects against insulin resistance. In contrast, recent studies in cardiac muscle (21) and other tissues (22,23) indicate that ATGL-mediated TAG hydrolysis is required for mitochondrial function such that enhancing, rather than inhibiting, ATGL action may improve metabolic outcomes. Nevertheless, the autonomous role of skeletal muscle TAG catabolism in influencing muscle-specific and systemic metabolic phenotypes remains unknown.The goal of the current study was to understand the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes, particularly glucose homeostasis and insulin action, in the context of obesity. We therefore generated animal models with decreased (skeletal muscle-specific ATGL knockout [SMAKO] mice) and increased (muscle creatine kinase [Ckm]-ATGL transgenic [Tg] mice) ATGL action exclusively in skeletal muscle, and assessed the metabolic consequences at baseline and in response to chronic high-fat feeding. Interestingly, modulation of IMTG hydrolysis via ATGL action did not significantly influence glucose homeostasis, insulin action, or other metabolic phenotypes in the context of obesity despite dramatic changes in IMTG content.  相似文献   
42.
Bret H. Goodpaster 《Diabetes》2013,62(4):1032-1035
The specific cellular underpinnings or mechanisms of insulin resistance (IR) are not clear. Here I present evidence to support a causal association between mitochondrial energetics and IR. A large body of literature indicates that mitochondrial capacity for oxidative metabolism is lower in human obesity and type 2 diabetes. Whether or not mitochondria play a causal role in IR is hotly debated. First, IR can be caused by many factors, many of which may or may not involve mitochondria. These include lipid overload, oxidative stress, and inflammation. Thus the first tenet of an argument supporting a role for mitochondria in IR is that mitochondria derangements can cause IR, but IR does not have to involve mitochondria. The second tenet of this argument is that animal models in which oxidative metabolism are completely abolished are not always physiologically or pathologically relevant to human IR, in which small metabolic perturbations can have profound effects over a prolonged period. Lastly, mitochondria are complex organelles, with diverse functions, including links with cell signaling, oxidative stress, and inflammation, which in turn can be connected with IR. In summary, mitochondrial “deficiency” is not merely a reduced energy generation or low fatty acid oxidation; this concept should be expanded to numerous additional important functions, many of which can cause IR if perturbed.The most common forms of human skeletal muscle insulin resistance (IR) are associated with 1) obesity, particularly abdominal obesity and excess accumulation of lipids in nonadipose tissues such as liver and skeletal muscle; and 2) physical inactivity. Identifying a common cellular basis for these conditions, however, remains elusive. Impairments in mitochondrial energetics have been linked to each of these conditions. Obesity has been reported to be associated with reduced mitochondria content and altered mitochondrial performance (1). Physical inactivity is associated with lower mitochondrial biogenesis and content (2). Conversely, exercise is a potent inducer of mitochondria biogenesis (3). Thus it is not surprising that considerable attention has been given to the possibility that mitochondria play a role in IR. But of course associations do not infer that derangements in mitochondria cause IR. Although many of these arguments can be made for other insulin-sensitive tissues such as liver, this line of reasoning to support a role for mitochondria in IR will focus on skeletal muscle.  相似文献   
43.
44.
45.
46.
47.
DNA polyintercalating drugs: DNA binding of diacridine derivatives.   总被引:13,自引:0,他引:13       下载免费PDF全文
As a first step in the synthesis and the study of DNA polyintercalating drugs, dimers of acridines have been prepared. Their DNA binding properties have been studied. It has been determined that when the chain separating the two aromatic rings is longer than a criticål distance, bisintercalation is actually observed and that the DNA binding affinity becomes quite large (greater than 10(8)-10(9) M-1). It is shown also that the optical characteristics of these molecules are dependent on the sequences of DNA. The fluorescence intensity of one of these dimers when bound to DNA varies as the fourth power of its A+T content. This derivative could be used as a fluorescent probe of DNA sequence.  相似文献   
48.
49.

Background

Few studies have validated bioelectrical impedance analysis (BIA) following bariatric surgery.

Methods

We examined agreement of BIA (Tanita 310) measures of total body water (TBW) and percent body fat (%fat) before (T0) and 12 months (T12) after bariatric surgery, and change between T0 and T12 with reference measures: deuterium oxide dilution for TBW and three-compartment model (3C) for %fat in a subset of participants (n?=?50) of the Longitudinal Assessment of Bariatric Surgery-2.

Results

T0 to T12 median (IQR) change in deuterium TBW and 3C %fat was ?6.4 L (6.4 L) and ?14.8 % (13.4 %), respectively. There were no statistically significant differences between deuterium and BIA determined TBW [median (IQR) difference: T0 ?0.1 L (7.1 L), p?=?0.75; T12 0.2 L (5.7 L), p?=?0.35; Δ 0.35 L(6.3 L), p?=?1.0]. Compared with 3C, BIA underestimated %fat at T0 and T12 [T0 ?3.3 (5.6), p?<?0.001; T12 ?1.7 (5.2), p?=?0.04] but not change [0.7 (8.2), p?=?0.38]. Except for %fat change, Bland-Altman plots indicated no proportional bias. However, 95 % limits of agreement were wide (TBW 15–22 L, %fat 19–20 %).

Conclusions

BIA may be appropriate for evaluating group level response among severely obese adults. However, clinically meaningful differences in the accuracy of BIA between individuals exist.  相似文献   
50.
There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥1 positive sample for strict pathogens and ≥2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号