首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
基础医学   12篇
临床医学   2篇
内科学   9篇
神经病学   14篇
外科学   3篇
药学   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2007年   3篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
21.
Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1V/V mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1+/+ and Gpsm1+/− mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.  相似文献   
22.
Medial entorhinal cortex (EC) deep layer neurons projecting to the dentate gyrus (DG) were studied. Neurons, retrogradely-labelled with rhodamine-dextran-amine were characterized electrophysiologically with the patch clamp technique and finally labelled with biocytin. Pyramidal and nonpyramidal neurons form projections from the deep layers of the EC to the molecular layer of the DG. In addition, both classes of projection neurons send ascending axon collaterals to the superficial layers of the EC. Both classes of neurons were characterized physiologically by regular action potential firing upon depolarizing current injection. While a substantial number of pyramidal projection cells showed intrinsic membrane potential oscillations, none of the studied nonpyramidal cells exhibited oscillations. Despite the morphological similarity of bipolar and multipolar cells to those of GABAergic interneurons in the EC, their electrophysiological characteristics were similar to those of principal neurons and immunocytochemistry for GABA was negative. We conclude, that neurons of the deep layers of the medial EC projecting to the DG may function as both local circuit and projecting neurons thereby contributing to synchronization between deep layers of the EC, superficial layers of the EC and the DG.  相似文献   
23.
L-Glutamic acid (Glu) is a key excitatory transmitter in the central nervous system. Excessive amounts of Glu are highly toxic to neurons and particularly the entorhinal cortex (EC) exhibits a remarkable loss of cells in the superficial layers in acute brain injury. The accumulation of Glu is limited by a family of high-affinity Glu transporters. Using extracellular potential recordings in rat brain slices we tested whether application of the Glu uptake blockers dihydrokainate and L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-2,4-PDC) affect stimulus-induced field potentials (FPs) in superficial layer III and deep layer V of the medial EC. We found that a high concentration (400 microM) of the uptake blockers significantly reduces stimulus-induced FPs in both layers. At lower concentration (200 microM), only dihydrokainate is efficient. The data show that Glu uptake is involved in the control of extracellular Glu levels during synaptic excitation of layers III and V of the medial EC.  相似文献   
24.
Behr J  Gloveli T  Heinemann U 《Brain research》2000,867(1-2):259-264
To determine whether chronic epilepsy induces persistent cellular changes in subicular neurons intracellular recordings were used to compare membrane properties of control and kindled rats. In both, control and kindled preparations the subiculum contained regular firing cells and an extensive sub-population of bursting cells expressing amplifying membrane characteristics. Subicular cells showed a transient depression of the fast and slow AHP in the course of kindling that may contribute to the induction but not permanence of the kindled state.  相似文献   
25.
The cholinergic system is critically involved in synaptic models of learning and memory by enhancing dendritic [Ca(2+)](i) signals. Diffuse cholinergic innervation suggests subcellular modulation of membrane currents and Ca(2+) signals. Here we use ion-selective microelectrodes to study spread of carbachol (CCh) after focal application into brain slice and subcellular muscarinic modulation of synaptic responses in CA1 pyramidal neurons. Proximal application of CCh rapidly blocked the somatic slow afterhyperpolarization (sAHP) following repetitive stimulation. In contrast, the time course of potentiation of the slow tetanic depolarization (STD) during synaptic input was slower and followed the time course of spread of CCh to the dendritic tree. With distal application, augmentation of the somatic STD and of dendritic Ca(2+) responses followed spread of CCh to the entire apical dendritic tree, whereas the sAHP was blocked only after spread of CCh to the proximal dendritic segment. In dendritic recordings, CCh blocked a small sAHP, augmented the STD, and rather reduced dendritic action potentials. Augmentation of dendritic Ca(2+) signals was highly correlated to augmentation of the STD. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV) blocked approximately 55% of the STD in control and during CCh application. In conclusion, muscarinic suppression of the proximal sAHP can augment firing and thereby Ca(2+) responses. Dendritic augmentation of the STD by blockade of the sAHP and direct enhancement of N-methyl-D-aspartate (NMDA) receptor-mediated currents potentiates Ca(2+) signals even when firing is not affected due to suprathreshold input. In this way, subcellular muscarinic modulation may contribute to parallel information processing and storage by dendritic synapses of CA1 pyramidal neurons.  相似文献   
26.
The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Consequently, ENaC is a major effector impacting systemic blood volume and pressure. We have shown recently that Rac1 increases ENaC activity, whereas Cdc42 fails to change channel activity. Here we tested whether Rac1 signaling plays a physiological role in modulating ENaC in native tissue and polarized epithelial cells. We found that Rac1 inhibitor NSC23766 markedly decreased ENaC activity in freshly isolated collecting ducts. Knockdown of Rac1 in native principal cells decreased ENaC-mediated sodium reabsorption and the number of channels at the apical plasma membrane. Members of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in the control of the actin cytoskeleton. N-WASP functions downstream of Cdc42, whereas WAVEs are effectors of Rac1 activity. N-WASP and all 3 isoforms of WAVE significantly increased ENaC activity when coexpressed in Chinese hamster ovary cells. However, wiskostatin, an inhibitor of N-WASP, had no effect on ENaC activity. Immunoblotting demonstrated the presence of WAVE1 and WAVE2 and absence of N-WASP and WAVE3 in mpkCCD(c14) and M-1 principal cells. Immunohistochemistry analysis also revealed localization of WAVE1 and WAVE2 but not N-WASP in the cortical collecting duct of Sprague-Dawley rat kidneys. Moreover, patch clamp analysis revealed that Rac1 and WAVE1/2 are parts of the same signaling pathway with respect to activation of ENaC. Thus, our findings suggest that Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins.  相似文献   
27.
Combined aortobronchial and aortoesophageal fistulas developed after a rupture of a thoracoabdominal aneurysm in a 73-year-old man and were successfully repaired in a one-stage procedure. This case demonstrates that operation can be successful even in this desperate situation.  相似文献   
28.
29.
Summary: Lowering extracellular magnesium induces different patterns of epileptiform activity in rat hippocampus and entorhinal cortex. Short recurrent epileptiform discharges in the hippocampus are stable over time, whereas seizurelike events (SLEs) in the entorhinal cortex, the subiculum, and the neighboring neocortex develop into late recurrent discharges which are not blocked by clinically employed antiepileptic drugs. We tested the sensitivity of the different epileptiform discharge patterns to. /V-methyl-D-aspartate (NMDA)- and non-NMDA-receptor antagonists. As NMDA-receptor antagonist we used dextrorphan, ket-amine, and 2-aminophosphonovalerate (2APV); as α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-receptor antagonist we employed the quinoxaline derivative glutamate 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The findings show that the different patterns of epileptiform activity, including the late recurrent discharges, are sensitive to all NMDA-receptor antagonists. However, when dextrorphan was employed to suppress seizure-like events, later recurrent discharges did not develop during the remaining time course of the experiment. CNQX reversibly suppressed recurrent discharges in the hippocampus and SLEs in the entorhinal cortex. However, late recurrent discharges become insensitive to CNQX, even at a high concentration of 60 μM m. This finding suggests a prominent role for NMDA receptors in the generation of late recurrent discharges.  相似文献   
30.
The entorhinal cortex (EC) is a major gateway for sensory information into the hippocampus and receives a cholinergic input from the forebrain. Therefore, we studied muscarinic effects on excitability and intracellular Ca2+ signalling in layer II stellate and layer III pyramidal projection neurons of the EC. In both classes of neurons, local pressure-pulse application of carbachol (1 mM) caused small, atropine-sensitive membrane depolarizations that were not accompanied by any detectable changes in [Ca2+]i. At a higher concentration (10 mM), carbachol induced a larger membrane depolarization associated with synaptic oscillations and epileptiform activity in both classes of neurons. In contrast to the intrinsic theta rhythm in stellate cells with one dominant peak frequency at approximately 7 Hz, the synaptically mediated oscillation induced by carbachol showed three characteristic peaks in the theta and gamma frequency range at approximately 11, 23 and 40 Hz. Although carbachol-induced epileptiform activity was associated with increases in intracellular free Ca2+ in both layer II and III cells, the observed [Ca2+]i accumulation was significantly larger in layer III than in layer II cells. Responses to intracellular current injections showed differences in Ca2+ accumulation in layer II and III cells at the same membrane potentials, suggesting a dominant expression of low- and high-voltage-activated Ca2+ channels in these layer II and III cells, respectively. In conclusion, we present evidence for significant differences in the [Ca2+]i regulation between layer II stellate and layer III pyramidal cells of the medial EC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号