首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   17篇
  国内免费   14篇
耳鼻咽喉   2篇
儿科学   10篇
妇产科学   4篇
基础医学   53篇
口腔科学   12篇
临床医学   22篇
内科学   86篇
皮肤病学   21篇
神经病学   11篇
特种医学   68篇
外科学   36篇
综合类   10篇
预防医学   5篇
眼科学   9篇
药学   45篇
中国医学   3篇
肿瘤学   22篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   11篇
  2011年   9篇
  2010年   19篇
  2009年   21篇
  2008年   6篇
  2007年   11篇
  2006年   17篇
  2005年   11篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   12篇
  2000年   4篇
  1999年   7篇
  1998年   22篇
  1997年   16篇
  1996年   20篇
  1995年   16篇
  1994年   12篇
  1993年   10篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   15篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   12篇
  1984年   2篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有419条查询结果,搜索用时 15 毫秒
411.
Nasopharyngeal cancer (NPC) is a highly prevalent and invasive head and neck cancer in Asia. Disease recurrence and distant metastasis account for major NPC deaths. Therefore, more effective therapy is needed. Lapatinib, a dual tyrosine kinase inhibitor (TKI) against both EGFR and HER-2, has been known to exert potent antitumor activity against several cancer models. Given that both EGFR and HER-2 are co-expressed in NPC, we hypothesized that dual targeting of EGFR and HER-2 by this small molecule EGFR/HER-2 TKI would elicit anti-tumor activity in NPC. Using in vitro models of NPC, we demonstrated that lapatinib was able to efficiently inhibit the phosphorylation of both EGFR and HER-2. This was accompanied by significant growth inhibition of NPC cells (with maximal growth inhibition >90%). For the most lapatinib-sensitive cell line (HK1-LMP1, with IC50 ∼ 600 nM), which harbored the highest levels of both EGFR and HER-2, inhibition of cell growth was associated G0/G1 cell cycle arrest, marked PARP cleavage, caspase-3 cleavage, as well as significant downregulation of several important survival proteins (e.g. survivin, Mcl-1 and cyclin D1). NPC cells are intrinsically invasive. We found that lapatinib was able to inhibit cellular invasion of both HK1-LMP1 and HONE-1 cells. Furthermore, our data demonstrated for the first time that lapatinib harbored potent anoikis-sensitization activity (i.e. sensitizing cancer cells to detachment-induced apoptosis) in human cancer cells overexpressing both EGFR and HER-2 (HK1-LMP1 and HK1). Taken together, our findings suggest that lapatinib is a promising anti-cancer agent for NPC with anti-invasion and anoikis-sensitization activities.  相似文献   
412.
413.
414.
415.

Background and Purpose

Fibroblast-to-myofibroblast differentiation is associated with scarring, an important issue in corneal surgery. Moxifloxacin (MOX), commonly applied to prevent post-operative infection, would benefit more if it modifies fibroblast-to-myofibroblast differentiation other than antimicrobial activity. Our purpose was to explore whether MOX has anti-fibrotic effect in human corneal fibroblasts (HCFs).

Experimental Approach

HCFs were incubated in MOX-containing medium concurrently with TGF-β1 (co-treatment), before (pretreatment) or after (post-treatment) adding TGF-β1. HCF contractility was evaluated with a type I collagen gel contraction assay. Expression of α-smooth muscle actin (α-SMA), Smad2, phospho-Smad2-Ser467, Smad4 and Smad7 was determined by immunoblotting. Formation of α-SMA-positive filaments and distribution of active Smad2 were observed under confocal microscopy. Expression of TGF-β receptor types I (TGFBR1) and II (TGFBR2) was assessed with flow cytometry.

Key Results

MOX did not affect gel contractility or α-SMA filament formation in HCFs without TGF-β1 stimulation. MOX did, however, retard HCF-containing gel contractility and α-SMA filament formation following TGF-β1 stimulation in the pretreatment and co-treatment groups but not in the post-treatment group. MOX blocked the expression of Smad2, phospho-Smad2-Ser467 and TGFBR1 under TGF-β1 incubation. Additionally, MOX enhanced Smad7 expression in TGF-β1-incubated HCFs, but did not interfere with TGF-β-triggered Smad2 nuclear translocation or Smad4 expression.

Conclusions and Implications

MOX inhibited TGF-β-induced fibroblast-to-myofibroblast differentiation via blocking TGFBR1 and enhancing Smad7 expression. MOX should be used before or during surgery to achieve these effects. These results suggest a de novo mechanism by which MOX participates in corneal wound healing.  相似文献   
416.

Background and purpose:

Nitric oxide (NO) controls numerous physiological processes by activation of its receptor, guanylyl cyclase (sGC), leading to the accumulation of 3′-5′ cyclic guanosine monophosphate (cGMP). Ca2+-calmodulin (CaM) regulates both NO synthesis by NO synthase and cGMP hydrolysis by phosphodiesterase-1. We report that, unexpectedly, the CaM antagonists, calmidazolium, phenoxybenzamine and trifluoperazine, also inhibited cGMP accumulation in cerebellar cells evoked by an exogenous NO donor, with IC50 values of 11, 80 and 180 µM respectively. Here we sought to elucidate the underlying mechanism(s).

Experimental approach:

We used cerebellar cell suspensions to determine the influence of CaM antagonists on all steps of the NO-cGMP pathway. Homogenized tissue and purified enzyme were used to test effects of calmidazolium on sGC activity.

Key results:

Inhibition of cGMP accumulation in the cells did not depend on changes in intracellular Ca2+ concentration. Degradation of cGMP and inactivation of NO were both inhibited by the CaM antagonists, ruling out increased loss of cGMP or NO as explanations. Instead, calmidazolium directly inhibited purified sGC (IC50= 10 µM). The inhibition was not in competition with NO, nor did it arise from displacement of the haem moiety from sGC. Calmidazolium decreased enzyme Vmax and Km, indicating that it acts in an uncompetitive manner.

Conclusions and implications:

The disruption of every stage of NO signal transduction by common CaM antagonists, unrelated to CaM antagonism, cautions against their utility as pharmacological tools. More positively, the compounds exemplify a novel class of sGC inhibitors that, with improved selectivity, may be therapeutically valuable.  相似文献   
417.

Aim:

To determine whether ginsenosides with various sugar attachments may act as active components responsible for the cardiac therapeutic effects of ginseng and sanqi (the roots of Panax ginseng and Panax notoginseng) via the same molecular mechanism triggered by cardiac glycosides, such as ouabain and digoxin.

Methods:

The structural similarity between ginsenosides and ouabain was analyzed. The inhibitory potency of ginsenosides and ouabain on Na+/K+-ATPase activity was examined and compared. Molecular modeling was exhibited for the docking of ginsenosides to Na+/K+-ATPase.

Results:

Ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure, equivalent to the sugar position in cardiac glycosides, and possessed inhibitory potency on Na+/K+-ATPase activity. However, their inhibitory potency was significantly reduced or completely abolished when a monosaccharide was linked to the C-6 or C-20 position of the steroid-like structure; replacement of the monosaccharide with a disaccharide molecule at either of these positions caused the disappearance of the inhibitory potency. Molecular modeling and docking confirmed that the difference in Na+/K+-ATPase inhibitory potency among ginsenosides was due to the steric hindrance of sugar attachment at the C-6 and C-20 positions of the steroid-like structure.

Conclusion:

The cardiac therapeutic effects of ginseng and sanqi should be at least partly attributed to the effective inhibition of Na+/K+-ATPase by their metabolized ginsenosides with sugar moieties attached only to the C-3 position of the steroid-like structure.  相似文献   
418.

Aim:

To examine if magnesium lithospermate B (MLB), a potent inhibitor of Na+/K+-ATPase, leads to the elevation of intracellular Ca2+ level as observed in cells treated with cardiac glycosides.

Methods:

Viability of SH-SY5Y neuroblastoma cells treated with various concentrations of ouabain or MLB was measured. Intracellular Ca2+ levels were visualized using Fluo4-AM (fluorescent dye) when cells were treated with ouabain or MLB in the presence or absence of KB-R7943 (Na+/Ca2+ exchanger inhibitor) and 2-APB (IP3 receptor antagonist). Molecular modeling was conducted for the docking of ouabain or MLB to Na+/K+-ATPase. Changes of cell body and dendrite morphology were monitored under a microscope.

Results:

severe toxicity was observed in cells treated with ouabain of concentration higher than 1 μmol/L for 24 h while no apparent toxicity was observed in those treated with MLB. Intracellular Ca2+ levels were substantially elevated by MLB (1 μmol/L) and ouabain (1 μmol/L) in similar patterns, and significantly reduced in the presence of KB-R7943 (10 μmol/L) or 2-APB (100 μmol/L). Equivalent interaction with the binding cavity of Na+/K+-ATPase was simulated for ouabain and MLB by forming five hydrogen bonds, respectively. Treatment of ouabain (1 μmol/L), but not MLB (1 μmol/L), induced dendritic shrink of SH-SY5Y cells.

Conclusion:

Comparable to ouabain, MLB leads to the elevation of intracellular Ca2+ level presumably via the same mechanism by inhibiting Na+/K+-ATPase. The elevated Ca2+ levels seem to be supplied by Ca2+ influx through the reversed mode of the Na+/Ca2+ exchanger and intracellular release from endoplasmic reticulum.  相似文献   
419.
Ifediba  TC; Stern  A; Ibrahim  A; Rieder  RF 《Blood》1985,65(2):452-455
Studies of the ability of Plasmodium falciparum to grow in vitro in the red blood cells of subjects with certain beta-thalassemia syndromes are often difficult to interpret because of the known inhibitory effect of an elevated cellular content of human fetal hemoglobin (HbF). P falciparum therefore was cultured in vitro in the erythrocytes of subjects with hemoglobin H (HbH) disease and various other alpha- thalassemia genotypes that are unaccompanied by increased levels of HbF. Growth of the malaria parasite was markedly retarded in HbH red blood cells, when compared with growth in blood from normal control subjects. No consistent impairment of growth was seen in the erythrocytes of subjects having deletion of only one or two alpha- globin genes. These results indicate that erythrocytes with a severe thalassemia phenotype provide a less hospitable growth environment for P falciparum than normally hemoglobinized red blood cells, even in the absence of increased levels of HbF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号