首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38368篇
  免费   3048篇
  国内免费   81篇
耳鼻咽喉   291篇
儿科学   1706篇
妇产科学   1185篇
基础医学   5185篇
口腔科学   401篇
临床医学   4655篇
内科学   7024篇
皮肤病学   681篇
神经病学   4515篇
特种医学   722篇
外科学   3710篇
综合类   353篇
现状与发展   1篇
一般理论   74篇
预防医学   5225篇
眼科学   596篇
药学   2526篇
中国医学   35篇
肿瘤学   2612篇
  2024年   81篇
  2023年   618篇
  2022年   989篇
  2021年   1951篇
  2020年   1156篇
  2019年   1674篇
  2018年   1880篇
  2017年   1271篇
  2016年   1439篇
  2015年   1494篇
  2014年   1960篇
  2013年   2461篇
  2012年   3566篇
  2011年   3448篇
  2010年   1726篇
  2009年   1483篇
  2008年   2274篇
  2007年   2365篇
  2006年   1998篇
  2005年   1832篇
  2004年   1566篇
  2003年   1293篇
  2002年   1164篇
  2001年   147篇
  2000年   108篇
  1999年   176篇
  1998年   230篇
  1997年   137篇
  1996年   114篇
  1995年   114篇
  1994年   106篇
  1993年   96篇
  1992年   54篇
  1991年   45篇
  1990年   42篇
  1989年   32篇
  1988年   30篇
  1987年   27篇
  1986年   30篇
  1985年   33篇
  1984年   30篇
  1983年   25篇
  1982年   25篇
  1981年   27篇
  1980年   31篇
  1979年   20篇
  1978年   21篇
  1977年   13篇
  1975年   9篇
  1972年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
996.
The role of dopamine in regulating sleep‐state transitions during, both natural sleep and under anaesthesia, is still unclear. Recording in vivo in the rat mPFC under urethane anaesthesia, we observed predominantly slow wave activity (SWA) of <1 Hz in the local field potential interrupted by occasional spontaneous transitions to a low‐amplitude‐fast (LAF) pattern of activity. During periods of SWA, transitions to LAF activity could be rapidly and consistently evoked by electrical stimulation of the ventral tegmental area (VTA). Spontaneous LAF activity, and that evoked by stimulation of the VTA, consisted of fast oscillations similar to those seen in the rapid eye movement (REM)‐like sleep state. Spontaneous and VTA stimulation‐evoked LAF activity occurred simultaneously along the dorsoventral extent of all mPFC subregions. Evoked LAF activity depended on VTA stimulation current and could be elicited using either regular (25–50 Hz) or burst stimulation patterns and was reproducible upon repeated stimulation. Simultaneous extracellular single‐unit recordings showed that during SWA, presumed pyramidal cells fired phasically and almost exclusively on the Up state, while during both spontaneous and VTA‐evoked LAF activity, they fired tonically. The transition to LAF activity evoked by VTA stimulation depended on dopamine D1‐like receptor activation as it was almost completely blocked by systemic administration of the D1‐like receptor antagonist SCH23390. Overall, our data demonstrate that activation of dopamine D1‐like receptors in the mPFC is important for regulating sleep‐like state transitions.  相似文献   
997.
Electroencephalogram (EEG) microstates that represent quasi‐stable, global neuronal activity are considered as the building blocks of brain dynamics. Therefore, the analysis of microstate sequences is a promising approach to understand fast brain dynamics that underlie various mental processes. Recent studies suggest that EEG microstate sequences are non‐Markovian and nonstationary, highlighting the importance of the sequential flow of information between different brain states. These findings inspired us to model these sequences using Recurrent Neural Networks (RNNs) consisting of long‐short‐term‐memory (LSTM) units to capture the complex temporal dependencies. Using an LSTM‐based auto encoder framework and different encoding schemes, we modeled the microstate sequences at multiple time scales (200–2,000 ms) aiming to capture stably recurring microstate patterns within and across subjects. We show that RNNs can learn underlying microstate patterns with high accuracy and that the microstate trajectories are subject invariant at shorter time scales (≤400 ms) and reproducible across sessions. Significant drop in the reconstruction accuracy was observed for longer sequence lengths of 2,000 ms. These findings indirectly corroborate earlier studies which indicated that EEG microstate sequences exhibit long‐range dependencies with finite memory content. Furthermore, we find that the latent representations learned by the RNNs are sensitive to external stimulation such as stress while the conventional univariate microstate measures (e.g., occurrence, mean duration, etc.) fail to capture such changes in brain dynamics. While RNNs cannot be configured to identify the specific discriminating patterns, they have the potential for learning the underlying temporal dynamics and are sensitive to sequence aberrations characterized by changes in metal processes. Empowered with the macroscopic understanding of the temporal dynamics that extends beyond short‐term interactions, RNNs offer a reliable alternative for exploring system level brain dynamics using EEG microstate sequences.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号